All rights reserved. Permission to reproduce any material contained in this book must be obtained, in writing, from the publisher.

Table of Contents

INTRODUCTION	1
CONTENTS OF THE KIT	2
EXPERIMENTS	5
1. Polarization of Light	5
2. Reflection from Metallic and Nonmetallic Surfaces	9
3. Two Polarizers	10
4. The Small Polarizers	14
5. The Small Polarizer Between Crossed Polarizers	15
6. Calcite with One Polarizer	18
7. Calcite Between Crossed Polarizers	21
8. Tourmaline	
9. Sodium Chloride	
10. Cellophane, Interference Colors	
11. Muscovite Mica, Interference Colors	
12. Cellophane, Compensation	
13. Determination of Fast and Slow Rays	
14. The Stepped Wedge	
15. Ice in a Thin Film	42
16. Vibration Directions of Fast and Slow Rays in Ice	
17. Thicker Ice Crystals	
18. Quartz Between Crossed Polarizers	
19. The Optic Axis	
20. Different Interference Colors for Different Directions of	
Light Travel Through the Crystal	50
21. Growth of Crystals from the Melt. Example: Benzoic Acid	
22. Growth of Crystals from the Melt. Example: Benzole Reid	
23. Growth of Crystals from Water Solution. Example: Sodium	55
Thiosulfate	58
24. Growth of Crystals from Water Solution.	30
Example: Ammonium Dihydrogen Phosphate	60
, , ,	00
25. The Uniaxial Interference Figure.	69
Example: Ammonium Dihydrogen Phosphate	
26. The Optic Sign of Ammonium Dihydrogen Phosphate	03
27. Preparation of a Section of Ammonium Dihydrogen	67
Phosphate Normal to the Optic Axis	60
28. The Biaxial Interference Figure. Example: Muscovite Mica	
29. Monochromatic Light	
30. Refraction and Birefringence	
31. Optical Activity	
32. Gelatin, the Effect of Strain	
33. Uncrossed Polarizers	
34. The Symmetry of Calcite	
35. Crystals from the Rotary Crystallizer	
POSTSCRIPT	
HOW TO ASSEMBLE THE MICROSCOPE	
ANSWERS TO QUESTIONS	02

Contents of the Kit

Microscope Parts

1 envelope containing 12 sections die-cut from heavy paperboard

1 tube adhesive

1 light bulb socket with attached cord

2 rubber gaskets for light bulb socket

1 five-power glass lens

1 piece polarizing film, 2 x 4 inches

1 blue filter sheet

1 red filter sheet

Microscope Accessories

8 long glass microscope slides

4 short glass microscope slides

1 plastic auxiliary converging lens

1 piece opaque paper

Specimens To Be Examined (in order of use)

I small piece polarizing film, 1/2 x I inch

1 cleavage rhomb of calcite

1 tourmaline crystal

2 cellophane bags

2 pieces of muscovite mica

1 vial benzoic acid

1 vial salol (phenyl salicylate)

l vial sodium thiosulfate

2.4 grams ammonium dihydrogen phosphate powder, in glass bottle

l slice ammonium dihydrogen phosphate crystal

l vial levulose

1 empty vial

Other Things You Will Need

1 40-watt light bulb

2 paper clips

a protractor

a fine-toothed saw

fine sandpaper

adhesive tape

cellophane ("Scotch") tape

aluminum foil

salt

granulated sugar

ice

unflavored gelatin

a white pebble

Introduction

The purpose of Bell System Science Experiment No. 4 is to suggest to you some experiments with crystals and light. You will think of many others yourself. The explanation of what is happening in some of the experiments may occur to you as you do them. More often, you will need to learn more about crystals or about light in order to understand your results. Some of this information is given in this booklet, but for some of it you should read the accompanying paperback book, Crystals and Light, An Introduction to Optical Crystallography. As you experiment more and learn more, questions may occur to you for which this book does not give a satisfactory answer. Then you will want to consult textbooks on optical crystallography, some of which are listed at the back of Crystals and Light.

With the paperboard pieces in this kit, you will build a microscope. However, do not put the microscope together until you have done the first five experiments, because you will need to use for these experiments things that will later become part of the microscope. A microscope is just a device for holding a magnifying lens or lenses and a well-lighted specimen in positions such that the specimen can be conveniently viewed through the magnifier.

The rest of this booklet is made up of descriptions of experiments for you to do and discussions of the significance of the results. Be sure to do the experiments in the order in which they are numbered. As in all science, understanding the results of more complicated experiments depends on understanding the results of simpler experiments.

With the descriptions of experiments there are questions that you can answer by performing the experiments and thinking about them. Whether or not you arrive at a satisfactory answer, you should read the answer in the back of the book before proceeding to the next experiment, because it is likely to contain information that will be useful to you in that experiment.