

Programmer's Guide for
MERLIN MAGIX

Integrated System and
MERLIN LEGEND
Communications System
PBX Driver

Issue 2.2 June 2002

Copyright 2002 Avaya Inc.
All Rights Reserved
Printed in U.S.A.

Notice

Every effort was made to ensure that the information in this book was complete and accurate at the time of
printing. However, information is subject to change.

Avaya Web Page

The world wide web home page for Avaya is http://www.avaya.com.

Heritage Statement

Intellectual property related to this product (including trademarks) and registered to Lucent Technologies
Inc. has been transferred or licensed to Avaya. Any reference within the text to Lucent Technologies Inc. or
Lucent should be interpreted as reference to Avaya. The exception is cross references to books published
prior to April 1, 2001, which may retain their original Lucent titles. Avaya, formed as a result of Lucent's
planned restructuring, designs, builds, and delivers voice, converged voice and data, customer-relationship
management, messaging, multiservice networking, and structured cabling products and services. Avaya
Labs is the research and development arm for the company.

Preventing Toll Fraud

Toll Fraud is the unauthorized use of your telecommunications system by an unauthorized party (for
example, a person who is not a corporate employee, agent, subcontractor, or working on your company's
behalf). Be aware that there is a risk of toll fraud associated with your system and that, if toll fraud occurs, it
can result in substantial additional charges for your telecommunications services.
Avaya Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need technical assistance or support, call
the Avaya Customer Care Center at
1 800 628-2888.

Providing Telecommunications Security

Telecommunications security of voice, data, and/or video communications is the prevention of any type of
intrusion to, that is, either unauthorized or malicious access to or use of, your company's
telecommunications equipment by some party.

Your company's “telecommunications equipment” includes both this Avaya product and any other
voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or working on your
company's behalf. Whereas, a “malicious party” is anyone, including someone who may be otherwise
authorized, who accesses your telecommunications equipment with either malicious or mischievous
intent.Such intrusions may be either to/through synchronous (time multiplexed and/or circuit-based) or
asynchronous (character-, message-, or packet-based) equipment or interfaces for reasons of:
Utilization (of capabilities special to the accessed equipment)
Theft (such as, of intellectual property, financial assets, or toll-facility access)
Eavesdropping (privacy invasions to humans)
Mischief (troubling, but apparently innocuous, tampering)
Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent).

Be aware that there may be a risk of unauthorized or malicious intrusions associated with your system
and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a

variety of losses to your company, including, but not limited to, human/data privacy, intellectual property,
material assets, financial resources, labor costs, and/or legal costs.
Your Responsibility for Your Company's Telecommunications Security
The final responsibility for securing both this system and its networked equipment rests with you - an Avaya
customer's system administrator, your telecommunications peers, and your managers. Base the fulfillment of
your responsibility on acquired knowledge and resources from a variety of sources, including, but not
limited to:
Installation documents
System administration documents
Security documents
Hardware-/software-based security tools
Shared information between you and your peers
Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program
and configure your:
Avaya provided telecommunications system and their interfaces
Avaya provided software applications, as well as their underlying hardware/software platforms and
interfaces
Any other equipment networked to your Avaya products

Federal Communications Commission Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses,
and can radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a
residential area is likely to cause harmful interference, in which case the user will be required to correct the
interference at their own expense. For further FCC information, see Appendix A, “Customer Support
Information,” in Feature Reference.
Canadian Department of Communications (DOC) Interference Information
This digital apparatus does not exceed the Class A limits for radio noise emissions set out in the radio
interference regulations of the Canadian Department of Communications.
Le Présent Appareil Numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux
appareils numériques de la classe A préscrites dans le réglement sur le brouillage radioélectrique édicté par
leministère des Communications du Canada.

Trademarks

MERLIN, MERLIN LEGEND, and MERLIN MAGIX are registered trademarks of Avaya Inc.
Microsoft, Windows, Windows NT, and MS-DOS are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
Intel and Pentium are registered trademarks of Intel Corporation.
Apple and Macintosh are registered trademarks of Apple Computer, Inc.
IBM is a registered trademark of International Business Machines, Inc.
Novell and NetWare are registered trademarks of Novell Corporation.
All products and company names are trademarks or registered trademarks of their respective holders.

Support Telephone Number

In the continental U.S., Avaya provides a toll free customer helpline 24 hours a day. Call the Avaya
Customer Care Center at 1 800 628-2888 or your Avaya authorized dealer if you need assistance when
installing, programming, or using your system. Outside the continental U.S., contact your local Avaya
authorized representative.

Contents

Programmer’s Guide Issue 2.2 i

 About This Document

n Purpose and Scope xxi
n Intended Audience xxii

n Terminology xxii

n Related Documents xxvi

1 TSAPI Model

n Definitions 1-1
n Client/Server Model 1-3
n TSAPI Programming Objects 1-3
n Identifier Management 1-7

2 MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

n Introduction 2-1
n Applications 2-2
n Switch Environment 2-6
n LAN & Computing Environment 2-9
n Architecture 2-10
n MERLIN LEGEND and MERLIN MAGIX CTI

Capacity and Limits 2-12
n MERLIN LEGEND and MERLIN MAGIX Support

for TSAPI 2-13
n Programming Guidelines for MERLIN LEGEND

and MERLIN MAGIX CTI Applications 2-21
n MERLIN LEGEND and MERLIN MAGIX Private

Data Libraries 2-29
n Extracting Private DAta From Events 2-34

Contents

ii Issue 2.2 Programmer’s Guide

3 Control Services and Events

n Opening, Closing, and Aborting a Stream 3-2
n Sending TSAPI Requests and Receiving

Confirmations 3-4
n Receiving Events 3-5
n TSAPI Version Control 3-6
n Private Data Version Control 3-6
n Migration from MERLIN LEGEND Private Data

Version 1 to MERLIN MAGIX Private Data
Version 2 3-7

n Querying for Available Services 3-8
n Querying Login and Password Requirements 3-8
n Querying for Supported TSAPI Services and

Events 3-8
n Querying for Devices 3-9
n Querying for Call/Call Monitor Support 3-10
n acsAbortStream() 3-11
n acsCloseStream() 3-13

n acsOpenStream() 3-16

n ACSUniversalFailureConfEvent 3-21

n ACSUniversalFailureEvent 3-23

n CSTAUniversalFailureConfEvent 3-25

n cstaGetAPICaps() 3-27

Contents

Programmer’s Guide Issue 2.2 iii

4 Call Control Services

n Sending Call Control Requests and Receiving
Confirmations 4-3

n Call Control Request Failures 4-3

n Call Control Service Page Format 4-4

n cstaAnswerCall() 4-6

n cstaClearConnection() 4-15

n cstaConferenceCall() 4-22

n cstaConsultationCall() 4-32

n cstaDeflectCall() 4-46

n cstaHoldCall() 4-54

n cstaMakeCall() 4-62

n cstaRetrieveCall() 4-69

n cstaTransferCall() 4-75

5 Supplementary Services

n Sending Supplementary Service Requests and
Receiving Confirmations 5-2

n Supplementary Service Request Failures 5-3
n Supplementary Service Page Format 5-3
n cstaQueryAgentState() 5-5
n cstaQueryDoNotDisturb() 5-11
n cstaQueryMsgWaitingInd() 5-14
n cstaSetAgentState() 5-18
n cstaSetDoNotDisturb() 5-24
n cstaSetMsgWaitingInd() 5-28

Contents

iv Issue 2.2 Programmer’s Guide

6 Monitoring

n Monitor Types 6-2
n Event Filtering 6-2
n cstaMonitorDevice() 6-3
n cstaMonitorStop() 6-12
n CSTAMonitorEndedEvent 6-15

7 Snapshop Services

n Sending Snapshot Service Requests and
Receiving Confirmations 7-1

n Supplementary Service Request Failures 7-2
n Snapshot Service Page Format 7-2
n cstaSnapshotDeviceReq() 7-4

8 Call Events

n General Call Event Feature Interactions 8-3
n Call Event Distribution in MERLIN MAGIX

Release 2.0 and later 8-4
n Event Page Format 8-5
n CSTAConferencedEvent 8-7
n CSTAConnectionClearedEvent 8-12
n CSTADeliveredEvent 8-20
n CSTADivertedEvent 8-38
n CSTAEstablishedEvent 8-42
n CSTAHeldEvent 8-59
n CSTANetworkReachedEvent 8-63
n CSTAQueuedEvent 8-68
n CSTARetrievedEvent 8-75
n CSTAServiceInitiatedEvent 8-78
n CSTATransferredEvent 8-82

Contents

Programmer’s Guide Issue 2.2 v

9 Feature Events

n Event Page Format 9-3
n CSTACallInfoEvent 9-4
n CSTADoNotDisturbEvent 9-7

10 Agent Status Events

n Event Page Format 10-3
n CSTALoggedOffEvent 10-4
n CSTALoggedOnEvent 10-7
n CSTANotReadyEvent 10-10
n CSTAReadyEvent 10-13
n CSTAWorkNotReadyEvent 10-16
n CSTAWorkReadyEvent 10-20

11 Escape Services

n Requesting Escape Services and Receiving
Confirmations 11-2

n Escape Service Request Failures 11-2
n Escape Service Page Format 11-3
n mlGetDGCGroupList() 11-5
n mlGetDGCGroupMemberList() 11-12
n mlGetDGCGroupTrunkList() 11-20
n mlQueryDGCGroupDAUInfo() 11-28
n mlQueryDGCGroupParameters() 11-33
n mlQueryDGCQueueStatus() 11-39
n mlQueryDeviceName() 11-44
n mlQueryTrunkStatus() 11-50

Contents

vi Issue 2.2 Programmer’s Guide

12 Service Invocation Event Flows

n Service Invocation Event Flows 12-3
n Basic Extension Calling Event Flows 12-34
n Incoming Trunk-to-Extension Calling 12-47
n Consultation Event Flows 12-57
n Conference Event Flows 12-88
n Transfer Event Flows 12-100
n Feature Invocation Event Flows 1-131
n Shared System Access Event Flows 12-203
n Direct Facility Termination Event Flows 12-215

A Supported MERLIN LEGEND Station Types A-1
 Supported MERLIN MAGIX Station Types A-3

 Abbreviations ABB-1

 Glossary GL-1

 Bibliography BIB-1

Figures

Programmer’s Guide Issue 2.2 vii

1 TSAPI Model
n 1-1. Sample Connection State Model 1-5

2 MERLIN LEGEND/MERLIN MAGIX TSAPI Services
Overview

n 2-1. MERLIN LEGEND/MERLIN MAGIX CentreVu
Telephony Services Configuration 2-2

n 2-2. CentreVu Computer-Telephony Software
Architecture 2-11

n 2-3. Original Call Information Illustration 2-32

n 2-4. MERLIN MAGIX (Release 2.0 and later) CTI
Capacity Limits 2-12

n 2-5. Support for TSAPI Services and Events 2-14

4 Call Control Services
n 4-1. cstaAnswerCall() Scenario 4-7

n 4-2. cstaClearConnection() Scenarios 4-16

n 4-3. cstaConferenceCall() Scenarios 4-23

n 4-4. cstaConsultationCall() Scenarios 4-34

n 4-5 cstaDeflectCall() Scenarios 4-48

n 4-6. cstaHoldCall() Scenarios 4-55

n 4-7. cstaMakeCall() Scenario 4-63

n 4-8. cstaRetrieveCall() Scenarios 4-69

n 4-9. cstaTransferCall() Scenarios 4-77

Figures

viii Issue 2.2 Programmer’s Guide

8 Call Events
n 8-1. CSTAConferencedEvent Scenario 8-8

n 8-2. CSTAConnectionClearedEvent Scenario 8-14

n 8-3. CSTADeliveredEvent Scenario 8-25

n 8-4. CSTADivertedEvent Scenario 8-39

n 8-5. CSTAEstablishedEvent Scenario 8-46

n 8-6. CSTAHeldEvent Scenario 8-60

n 8-7. CSTANetworkReachedEvent Scenario 8-64

n 8-8. CSTAQueuedEvent Scenario 8-70

n 8-9. CSTARetrievedEvent Scenario 8-75

n 8-10. CSTAServiceInitiatedEvent Scenario 8-79

n 8-10. CSTAServiceInitiatedEvent Scenario 8-79

n 8-11. CSTATransferredEvent Scenario 8-84

Tables

Programmer’s Guide Issue 2.2 ix

2 MERLIN LEGEND/MERLIN MAGIX TSAPI Overview
n 2-1. MERLIN LEGEND (Releases 5.0 and later)

and MERLIN MAGIX (Releases 1.0 and 1.5) CTI
Control and Monitoring for Button Types 2-8

n 2-2 MERLIN MAGIX Release 2.0 CTI Control and
Monitoring for Button Types 2-8

n 2-3. MERLIN LEGEND (Release 5.0 and later)
and MERLIN MAGIX (Releases 1.0 and 1.5) CTI
Capacity Limits 2-12

n 2-4 MERLIN MAGIX (Release 2.0) CTI Capacity
Limits 2-12

n 2-5. Support for TSAPI Services and Events 2-14

3 Control Services and Events
n 3-1. MERLIN LEGEND/MERLIN MAGIX CTI

Support for TSAPI Control Services and Events 3-2

n 3-2. Migration of Structure Member and PDU
Names from Private Data Version 1 to Private
Data Version 2 3-8

n 3-3. Client Library TSAPI Functions and
Confirmation Events 3-10

n 3-4. acsAbortStream() Request Parameters 3-12

n 3-5. acsAbortStream() Return Values 3-12

n 3-6. acsCloseStream() Request Parameters 3-14

n 3-7. acsCloseStream() Return Values 3-14

n 3-8. acsCloseStreamConfEvent Parameters 3-14

n 3-9. acsOpenStream() Request Parameters 3-16

n 3-10. acsOpenStream() Return Values 3-17

n 3-11. acsOpenStreamConfEvent Parameters 3-18

n 3-12. ACSUniversalFailureConfEvent Parameters 3-21

n 3-13. ACSUniversalFailureEvent Parameters 3-23

n 3-14. CSTAUniversalFailureConfEvent
Parameters 3-25

n 3-15. CSTAGetAPICapsConfEvent Private Data 3-27

n 3-16. cstaGetAPICaps() Request Parameters 3-28

n 3-17. cstaGetAPICaps() Return Values 3-28

Tables

x Issue 2.2 Programmer’s Guide

n 3-18. CSTAGetAPICapsConfEvent Parameters 3-30

4 Call Control Services
n 4-1. MERLIN LEGEND (Release 5.0 and later)

and MERLIN MAGIX (Releases 1.0 and 1.5) CTI
Support for TSAPI Call Control Services 4-2

n 4-2. MERLIN MAGIX Releases 2.0 CTI Support
for TSAPI Call Control Services 4-2

n 4-3. Symbols Used in Call Control Service
Scenario Figures 4-4

n 4-4. cstaAnswerCall() Parameters 4-7

n 4-5. cstaAnswerCall() Return Values 4-7

n 4-6. CSTAAnswerCallConfEvent Parameters 4-8

n 4-7. cstaClearConnection() Parameters 4-15

n 4-8. cstaClearConnection() Return Values 4-17

n 4-9. CSTAClearConnectionConfEvent Parameters 4-17

n 4-10. cstaConferenceCall() Parameters 4-23

n 4-11. cstaConferenceCall() Return Values 4-24

n 4-12. CSTAConferenceCallConfEvent Parameters 4-25

n 4-13. cstaConsultationCall() Parameters 4-33

n 4-14. cstaConsultationCall() Return Values 4-34

n 4-15. CSTAConsultationCallConfEvent
Parameters 4-35

n 4-16 cstaDeflectCall() Parameters 4-48

n 4-17 cstaDeflectCall() Return Values 4-49

n 4-18 CSTADeflectCallConfEvent Parameters 4-49

n 4-19. cstaHoldCall() Parameters 4-55

n 4-20. cstaHoldCall() Return Values 4-56

n 4-21. CSTAHoldCallConfEvent Parameters 4-56

n 4-22. cstaMakeCall() Parameters 4-63

n 4-23. cstaMakeCall() Return Values 4-64

n 4-24. CSTAMakeCallConfEvent Parameters 4-65

n 4-25. cstaRetrieveCall() Parameters 4-69

n 4-26. cstaRetrieveCall() Return Values 4-70

n 4-27. CSTARetrieveCallConfEvent Parameters 4-70

n 4-28. cstaTransferCall() Parameters 4-76

n 4-29. cstaTransferCall() Return Values 4-77

n 4-30. CSTATransferCallConfEvent Parameters 4-78

Tables

Programmer’s Guide Issue 2.2 xi

5 Supplementary Services
n 5-1. MERLIN MAGIX CTI Support for TSAPI

Supplementary Services 5-1

n 5-2 MERLIN MAGIX CTI Agent States - Calling
Group not specified 5-5

n 5-3 MERLIN MAGIX CTI Agent States - Calling
Group Specified in Private Data 5-5

n 5-4. cstaQueryAgentState() Parameters 5-6

n 5-5. . cstaQueryAgentState() Private Service
Request Parameters in MERLIN MAGIX Release
2.1 5-6

n 5-6. cstaQueryAgentState () Return Values 5-6

n 5-7. CSTAQueryAgentStateConfEvent
Parameters 5-7

n 5-8 cstaQueryDoNotDisturb() Parameters 5-11

n 5-9. cstaQueryDoNotDisturb() Return Values 5-11

n 5-10. CSTAQueryDndConfEvent Parameters 5-12

n 5-11. cstaQueryMsgWaitingInd() Parameters 5-14

n 5-12 cstaQueryMsgWaitingInd() Return
ValuesQueryMsgWaitingInd 5-14

n 5-13 CSTAQueryMwiConfEvent Parameters 5-15

n 5-14 MERLIN MAGIX CTI Supported Agent
Modes in Release 2.0 5-18

n 5-15 MERLIN MAGIX CTI Supported Agent
Modes in Release 2.1 5-17

n 5-16 cstaSetAgentState() Parameters for
MERLIN MAGIX Releases 1.5 and 2.0 5-19

n 5-17 cstaSetAgentState() Parameters for
MERLIN MAGIX Release 2.1 and later 5-19

n 5-18 cstaSetAgentState() Return Values 5-20

n 5-19 CSTASetAgentStateConfEvent Parameters 5-21

n 5-20 cstaSetDoNotDisturb() Parameters 5-24

n 5-21 cstaSetDoNotDisturb() Return Values 5-24

n 5-22 CSTASetDndConfEvent Parameters 5-25

n 5-23 cstaSetMsgWaitingInd() Parameters 5-28

n 5-24 cstaSetMsgWaitingInd() Return Values 5-29

n 5-25 CSTASetMwiConfEvent Parameters 5-29

Tables

xii Issue 2.2 Programmer’s Guide

6 Monitoring
n 6-1. MERLIN LEGEND/MERLIN MAGIX CTI

Support for TSAPI Monitoring Services and
Events 6-1

n 6-2. cstaMonitorDevice() Parameters 6-4

n 6-3. cstaMonitorDevice() Return Values 6-4

n 6-4. CSTAMonitorConfEvent Parameters 6-5

n 6-5 Events Provided With No Event Filtering 6-8

n 6-6. cstaMonitorStop() Parameters 6-12

n 6-7. cstaMonitorStop() Return Values 6-12

n 6-8. CSTAMonitorStopConfEvent Parameters 6-13

n 6-9. CSTAMonitorEndedEvent Parameters 6-15

n 6-10. CSTAMonitorEndedEvent Causes 6-15

7 Snapshot Services
n 7-1. MERLIN MAGIX CTI Support for TSAPI

Snapshot Services 7-1

n 7-2. cstaSnapshotDeviceReq() Parameters 7-4

n 7-3. cstaSnapshotDeviceReq() Return Values 7-4

n 7-4. CSTASnapshotDeviceConfEvent Parameters 7-5

Tables

Programmer’s Guide Issue 2.2 xiii

8 Call Events
n 8-1. MERLIN LEGENDand MERLIN MAGIX CTI

Support for TSAPI Call Events 8-2

n 8-2. Symbols Used in Event Scenario Figures 8-6

n 8-3. CSTAConferencedEvent Parameters 8-7

n 8-4. CSTAConferencedEvent Causes 8-9

n 8-5. CSTAConnectionClearedEvent Parameters 8-13

n 8-6. MERLIN LEGEND (Release 5.0 and later)
and MERLIN MAGIX (Releases 1.0 and 1.5)
CSTAConnectionClearedEvent Causes 8-14

n 8-7. MERLIN MAGIX Release 2.0 and 2.1
CSTAConnectionClearedEvent Causes 8-14

n 8-8. CSTADeliveredEvent Parameters 8-20

n 8-9. MERLIN LEGEND (Release 5.0 and later)
and MERLIN MAGIX (Releases 1.0 and 1.5)
CSTADeliveredEvent Causes 8-25

n 8-10. MERLIN MAGIX Release 2.0 and 2.1
CSTADeliveredEvent Causes 8-25

n 8-11. CSTADeliveredEvent Private Data
Parameters 8-27

n 8-12. CSTADivertedEvent Parameters 8-38

n 8-13. MERLIN MAGIX Release 1.5
CSTADivertedEvent Causes 8-39

n 8-14. MERLIN MAGIX Release 2.0 and later
CSTADivertedEvent Causes 8-39

n 8-15. CSTAEstablishedEvent Parameters 8-42

n 8-16. MERLIN LEGEND (Release 5.0 and later)
and MERLIN MAGIX (Releases 1.0 and 1.5)
CSTAEstablishedEvent Causes 8-47

n 8-17. MERLIN MAGIX Release 2.0 and 2.1
CSTAEstablishedEvent Causes 8-47

n 8-18. CSTAEstablishedEvent Private Data
Parameters 8-49

n 8-19. CSTAHeldEvent Parameters 8-59

n 8-20. CSTAHeldEvent Causes Prior to MERLIN
MAGIX 2.1 8-60

n 8-21. CSTAHeldEvent Causes MERLIN MAGIX
Release 2.1 and Later 8-60

n 8-22. CSTANetworkReachedEvent Parameters 8-63

Tables

xiv Issue 2.2 Programmer’s Guide

n 8-23. CSTANetworkReachedEvent Causes 8-64

n 8-24. CSTAQueuedEvent Parameters 8-69

n 8-25. CSTAQueuedEvent Causes 8-71

n 8-26. CSTAQueuedEvent Private Data
Parameters 8-72

n 8-27. CSTARetrievedEvent Parameters 8-75

n 8-28. CSTARetrievedEvent Causes 8-76

n 8-29. CSTAServiceInitiatedEvent Parameters 8-79

n 8-30. CSTAServiceInitiatedEvent Causes 8-80

n 8-31. CSTATransferredEvent Parameters 8-83

n 8-32. CSTATransferredEvent Causes 8-84

9 Feature Events
n 9-1. MERLIN MAGIX CTI Support for TSAPI

Feature Events 9-2

n 9-2 CSTACallInfoEvent Parameters 9-4

n 9-3 CSTADoNotDisturbEvent Parameters 9-7

10 Agent Status Events
n 10-1. MERLIN MAGIX CTI Support for TSAPI

Agent Status Events 10-2

n 10-2 CSTALoggedOffEvent Parameters 10-5

n 10-3. CSTALoggedOnEvent Parameters 10-8

n 10-4. CSTANotReadyEvent Parameters 10-10

n 10-5. CSTAReadyEvent Parameters 10-13

n 10-6. CSTAWorkNotReadyEvent Parameters 10-17

n 10-7. CSTAReadyEvent Parameters 10-20

11 Escape Services

n 11-1. MERLIN MAGIX CTI Support Escape
Services 11-1

n 11-2 cstaEscapeService() Parameters for
mlGetDGCGroupList() 11-6

n 11-3. cstaEscapeService() Return Values 11-6

Tables

Programmer’s Guide Issue 2.2 xv

n 11-4. CSTAEscapeServiceConfEvent Parameters
for mlGetDGCGroupList() 11-6

n 11-5. mlGetDGCGroupList() Confirmation Event
Private Data Parameters 11-7

n 11-6. mlGetDGCGroupList() CSTAPrivateEvent
Parameters 11-7

n 11-7. mlGetDGCGroupList() CSTAPrivateEvent
Private Data Parameters 11-7

n 11-8. cstaEscapeService() Parameters for mlGet-
DGCGroupMemberList() 11-13

n 11-9. mlGetDGCGroupMemberList() Private
Service Parameters 11-13

n 11-10. cstaEscapeService() Return Values 11-13

n 11-11. CSTAEscapeServiceConfEvent
Parameters for mlGetDGCGroupMemberList() 11-14

n 11-12. mlGetDGCGroupMemberList() Private
Confirmation Event Private Data Parameters 11-14

n 11-13. mlGetDGCGroupMemberList()
CSTAPrivateEvent Parameters 11-15

n 11-14. mlGetDGCGroupMemberList()
CSTAPrivateEvent Private Data Parameters 11-15

n 11-15. cstaEscapeService() Parameters for
mlGetDGCGroupTrunkList() 11-21

n 11-16. mlGetDGCGroupTrunkList() Private
Service Parameters 11-21

n 11-17. cstaEscapeService() Return Values 11-21

n 11-18. CSTAEscapeServiceConfEvent
Parameters for mlGetDGCGroupTrunkList() 11-22

n 11-19. mlGetDGCGroupTrunkList() Confirmation
Event Private Data Parameters 11-22

n 11-20. mlGetDGCGroupTrunkList()
CSTAPrivateEvent Parameters 11-23

n 11-21. mlGetDGCGroupTrunkList()
CSTAPrivateEvent Private Data Parameters 11-23

n 11-22. cstaEscapeService() Parameters for
mlQueryDGCGroupDAUInfo() 11-28

n 11-23. mlQueryDGCGroupDAUInfo() Private
Service Request Parameters 11-28

n 11-24. cstaEscapeService() Return Values 11-28

n 11-25. CSTAEscapeServiceConfEvent
Parameters for mlQueryDGCGroupDAUInfo() 11-29

n 11-26. mlQueryDGCGroupDAUInfo()
Confirmation Event Private Data Parameters 11-29

Tables

xvi Issue 2.2 Programmer’s Guide

n 11-27. cstaEscapeService() Parameters for
mlQueryDeviceName() 11-33

n 11-28. mlQueryDGCGroupParameters() Private
Service Request Parameters 11-33

n 11-29. cstaEscapeService() Return Values 11-33

n 11-30. CSTAEscapeServiceConfEvent
Parameters for mlQueryDGCGroupParameters() 11-34

n 11-31. mlQueryDeviceName() Confirmation
Event Private Data Parameters 11-35

n 11-32. cstaEscapeService() Parameters for
mlQueryDGCQueueStatus() 11-39

n 11-33. mlQueryDGCQueueStatus() Private
Service Request Parameters 11-39

n 11-34. cstaEscapeService() Return Values 11-39

n 11-35. CSTAEscapeServiceConfEvent
Parameters for mlQueryDGCQueueStatus() 11-40

n 11-36. mlQueryDGCQueueStatus() Confirmation
Event Private Data Parameters 11-40

n 11-37. cstaEscapeService() Parameters for
mlQueryDeviceName() 11-44

n 11-38. mlQueryDeviceName() Private Service
Request Parameters 11-44

n 11-39. cstaEscapeService() Return Values for
mlQueryDeviceName() 11-44

n 11-40. CSTAEscapeServiceConfEvent
Parameters 11-45

n 11-41. mlQueryDeviceName() Confirmation
Event Private Data Parameters 11-45

n 11-42. mlQueryTrunkStatus() Trunk Status
Values 11-50

n 11-43. cstaEscapeService() Parameters for
mlQueryTrunkStatus() 11-50

n 11-44. mlQueryTrunkStatus() Private Service
Request Parameters 11-50

n 11-45. cstaEscapeService() Return Values 11-51

n 11-46. CSTAEscapeServiceConfEvent
Parameters for mlQueryTrunkStatus() 11-51

n 11-47. mlQueryTrunkStatus() Confirmation Event
Private Data Parameters 11-51

Tables

Programmer’s Guide Issue 2.2 xvii

12 Event Flows
n 12-1. Symbols Used in Call Control Service

Scenario Figures 12-2

Tables

xviii Issue 2.2 Programmer’s Guide

About This Document

Contents

Programmer’s Guide Issue 2.2 xix

Purpose and Scope xxi
Intended Audience xxii
Terminology xxii
Related Documents xxvi

Contents

xx Issue 2.2 Programmer’s Guide
xx

About This Document

Programmer’s Guide Issue 2.2 xxi

Purpose and Scope

 NOTE:
 Computer Telephony Integration (CTI) is supported by Releases 5.0, 6.0,

6.1 and 7.0 of the MERLIN LEGEND switch, and Releases 1.0, 1.5, 2.0,
2.1, and 2.2 of the MERLIN MAGIX switch.

The MERLIN LEGEND PBX Driver operates with Releases 5.0, 6.0, 6.1 and
7.0 of the MERLIN LEGEND switch, and Releases 1.0 and 1.5 of the
MERLIN MAGIX switch. It will not operate with any other release of the
MERLIN LEGEND or MERLIN MAGIX switches.

The MERLIN MAGIX PBX Driver operates with all MERLIN LEGEND and
MERLIN MAGIX switch releases that support CTI.

This document provides application developers with detailed information about
Computer-Supported Telecommunications Applications (CSTA) and the Teleph-
ony Services Application Programming Interface (TSAPI) for the MERLIN
LEGEND Advanced Communications System and MERLIN MAGIX Integrated
System PBX Driver. This programming interface is for use in a CentreVu®
Telephony Services environment.

This document:

n lists the CSTA and TSAPI services and events that MERLIN LEGEND and
MERLIN MAGIX CTI provide and explains the programming interface to
each

n lists the service and event parameters that MERLIN LEGEND and
MERLIN MAGIX CTI provide and details their semantics

n describes the service and event interactions with MERLIN LEGEND and
MERLIN MAGIX switch features

About This Document

xxii Issue 2.2 Programmer’s Guide

n provides TSAPI syntax for programming

n explains the programming interface to MERLIN LEGEND and MERLIN
MAGIX private data

Intended Audience

This document is for Telephony Services application developers who are
programming applications for use with the MERLIN LEGEND Advanced
Communications System or the MERLIN MAGIX Integrated System. Refer to
Telephony Services in the “Terminology” section later in this chapter. This
document assumes a familiarity with

n the CSTA model and services presented in Standard ECMA-217 Services
for Computer-Supported Telecommunications Applications (CSTA)

n the programming interface in Telephony Services Application
Programming Interface (TSAPI)

n MERLIN LEGEND switch features and operations described in MERLIN
LEGEND Communications System Feature Reference

n MERLIN MAGIX switch features and operations described in MERLIN
MAGIX Integrated System Feature Reference

Terminology

The definitions below describe some important terms. More detailed definitions appear in
context as key concepts, functions, and services are fully described. In addition, there is a
Glossary and List of Acronyms at the end of the document.

API Control Services (ACS)

An application uses ACS services (a subset of TSAPI) to open, close, and control
a communication channel (known as a stream) to a Telephony Server. Once an
application opens a stream, the application uses other TSAPI function calls on the
stream to request CSTA services from the Telephony Server.

CentreVu Computer-Telephony
The name of the combined product that includes:

n CentreVu Telephony Services

n CentreVu CallVisor PC

Only the CentreVu Telephony Services component of the product is relevant to
the MERLIN LEGEND PBX Driver and MERLIN MAGIX PBX Driver.

About This Document

Programmer’s Guide Issue 2.2 xxiii

CentreVu Telephony Services
An implementation of Telephony Services for Windows.

CentreVu Telephony Services supercedes PassageWay Telephony Services
for Windows NT. The MERLIN LEGEND Advanced Communications System
PBX Driver and MERLIN MAGIX Integrated System PBX Driver are only certified
to operate with CentreVu Telephony Services; they are not certified to operate
with PassageWay Telephony Services for Windows NT.

Computer-Supported Telecommunications Applications (CSTA)

CSTA is a European Computer Manufacturers’ Association (ECMA) standard that
defines a standard set of Telephony Services, responses, and events. An
example of a service is a request for a call to be made from one phone to an-
other. An example of an event is a message that an incoming call is ringing a
phone. The CSTA definitions form the foundation for CentreVu Telephony
Services. Although CSTA provides standard service and event definitions, it does
not provide an Application Programming Interface (API) definition. TSAPI
provides the API for CentreVu Telephony Services.

Computer-Supported Telecommunications Applications (CSTA)

The connection between the Telephony server and the MERLIN
LEGEND/MERLIN MAGIX system that allows Computer-Telephony Integration.

MERLIN LEGEND Computer Telephony Integration (CTI)

The ability to monitor and control call activity at MERLIN LEGEND (Release 5.0
or later) or MERLIN MAGIX (Releases 1.0 and 1.5) stations through telephony-
enabled software applications. CTI capabilities for MERLIN LEGEND and
MERLIN MAGIX are implemented through Telephony Services.
MERLIN LEGEND CTI does not support MERLIN MAGIX Release 2.0 or later
releases of the MERLIN MAGIX switch. MERLIN MAGIX CTI has superceded
MERLIN LEGEND CTI.

MERLIN MAGIX Computer Telephony Integration (CTI)
The ability to monitor and control call activity at MERLIN LEGEND (Release 5.0
or later) or MERLIN MAGIX stations through telephony-enabled software
applications. CTI capabilities for MERLIN LEGEND and MERLIN MAGIX are
implemented through Telephony Services.

A number of MERLIN MAGIX CTI capabilities are release dependent. Access to
these capabilities requires that the system is equipped with the appropriate
releases of the MERLIN MAGIX switch software and the MERLIN MAGIX PBX
Driver. For example, access to MERLIN MAGIX Release 2.0 CTI capabilities
requires that the system is equipped with Release 2.0 (or later) of the MERLIN
MAGIX switch software and Release 2.0 (or later) of the MERLIN MAGIX PBX
Driver. Access to Release 2.1 CTI capabilities requires that the system is
equipped with Release 2.1 (or later) of the MERLIN MAGIX switch software and
Release 2.1 (or later) of the MERLIN MAGIX PBX Driver.

About This Document

xxiv Issue 2.2 Programmer’s Guide

MERLIN LEGEND PBX Driver (MLPD)

The MERLIN LEGEND PBX driver is a set of software modules on a Telephony
Server that interfaces switch-independent Telephony Server software to the
MERLIN LEGEND Advanced Communications System or MERLIN MAGIX
(Releases 1.0 and 1.5) Integrated System. This software terminates and
manages the MERLIN LEGEND or MERLIN MAGIX CTI link. The MERLIN
LEGEND PBX Driver does not support Release 2.0 or later of the MERLIN
MAGIX switch. The MERLIN MAGIX PBX Driver has superceded the MERLIN
LEGEND PBX Driver.

MERLIN MAGIX PBX Driver (MMPD)
The MERLIN MAGIX PBX driver is a set of software modules on a Telephony
Server that interfaces switch-independent Telephony Server software to the
MERLIN LEGEND Advanced Communications System or MERLIN MAGIX
Integrated System. This software terminates and manages the MERLIN LEGEND
or MERLIN MAGIX CTI link.

PassageWay Telephony Services

Implementations of Telephony Services on NetWare (PassageWay Telephony
Services for NetWare) and Windows NT (PassageWay Telephony Services for
Windows NT).

Implementations of the MERLIN LEGEND PBX Driver are available for both the
NetWare and Windows NT environments; an implementation of the MERLIN
MAGIX PBX Driver is available for Windows NT only. The MERLIN LEGEND
Advanced Communications System Windows NT Driver and the MERLIN MAGIX
Integrated System PBX Driver are only certified to operate with CentreVu
Telephony Services; they are not certified to operate with PassageWay
Telephony Services for Windows NT.

Private Data
Private Data is a TSAPI mechanism that allows a PBX vendor to enhance TSAPI
services and events and even provide new services within the TSAPI framework.
The MERLIN LEGEND PBX Driver and MERLIN MAGIX PBX Driver use private
data to provide value-added features:

n Both the MERLIN LEGEND and MERLIN MAGIX switches pass any call
prompting digits that have been collected for a call in certain events for the
call.

n When an application uses the cstaConsultationCall() to extend a call to
another desktop, the MERLIN LEGEND and MERLIN MAGIX PBX Drivers
pass information about the original caller (and prompted digits) in private
data so that an application monitoring the receiving extension can pop a
screen using information about the original caller as soon as the
consultation call begins to alert at the receiving desktop.

n Beginning with MERLIN MAGIX Release 2.0, the switch includes
information for account codes as well as trunk identifiers for incoming calls.

About This Document

Programmer’s Guide Issue 2.2 xxv

n Beginning with MERLIN MAGIX Release 2.0 the switch offers several
escape services for applications to obtain information about administered
DGC groups, administered labels and trunk status information. Additional
escape services have been added in MERLIN MAGIX Release 2.1.

When MERLIN LEGEND or MERLIN MAGIX private data is provided within a
TSAPI event, the private data appears in the privateData parameter. This
document defines a C structure that overlays the privateData parameter and
gives programmers access to MERLIN LEGEND or MERLIN MAGIX private data.

Telephony Services Application Programming Interface (TSAPI)
TSAPI is the C programming language interface to CentreVu Telephony Services.
Application programmers use TSAPI to access CSTA services, responses, and
events. TSAPI is switch independent and supports many CentreVu Telephony
Services-compliant drivers, including the MERLIN LEGEND Advanced
Communications System Windows NT Driver and MERLIN MAGIX Integrated
System PBX Driver.

Telephony Server
A Telephony Server is a server on a local area network that provides CentreVu
Telephony Services to client applications. The Telephony Server has a CTI link to
a MERLIN LEGEND Advanced Communications System or MERLIN MAGIX
Integrated System. A client application makes TSAPI requests of the Telephony
Server. The Telephony Server passes these requests to the MERLIN LEGEND
Advanced Communications System Windows NT Driver or MERLIN MAGIX
Integrated System PBX Driver, which, in turn, passes them over the CTI link to
the MERLIN LEGEND or MERLIN MAGIX switch. The MERLIN LEGEND or
MERLIN MAGIX switch processes these requests and returns responses and call
events through the Telephony Server to the requesting application.

 NOTE:
 The term Telephony Server is also commonly used to refer to the

Telephony Services software running on the Telephony Server machine.

Telephony Services
A technology providing server-based telephony control for client (desktop) or
server applications on an enterprise network.

Telephony Services implementations include:

n PassageWay Telephony Services for NetWare

n PassageWay Telephony Services for Windows NT

n CentreVu Telephony Services

No support for MERLIN LEGEND or MERLIN MAGIX CTI is available with
PassageWay Telephony Services for NetWare or PassageWay Telephony
Services for Windows NT.

About This Document

xxvi Issue 2.2 Programmer’s Guide

Related Documents

Following is a list of documents related to the MERLIN LEGEND Advanced Communications
System, MERLIN MAGIX Integrated System, CSTA, TSAPI, and Telephony Services. A
description follows each document name describing the role of the document.

Telephony Services Application Programming Interface (TSAPI), Version 2

This document:

n Defines the TSAPI programming interface, an Application Programming
Interface for CSTA Services and Events;

n Provides a tutorial on the CSTA client/server operational model.

TSAPI provides a programming environment that may be used with any switch for
which there is a Telephony Services Driver (such as the MERLIN LEGEND or
MERLIN MAGIX PBX Driver). The TSAPI specification is required reading for a
Telephony Services application developer.

Standard ECMA-217 Services for Computer-Supported Telecommunications Applications
(CSTA), European Computer Manufacturers’ Association, December 1994

The above standard reflects agreements of ECMA member companies on a set
of Telephony Services and Events. This document contains the CSTA model and
service and event definitions. The CSTA standard is optional reading for an
application developer.

MERLIN LEGEND Advanced Communications System Release 7.0 Feature Reference,
555-770-110

The above document provides a comprehensive description of MERLIN LEGEND
Advanced Communications System features. It is an important reference for the
planning, operation, and administration of MERLIN LEGEND CTI application develop-
ment. It is recommended reading for a MERLIN LEGEND CTI application developer.

This document is provided with the MERLIN LEGEND switch hardware.
Additional copies are available at the Fulfillment Center.

MERLIN MAGIX® Integrated System Feature Reference – Release 2.2 and Earlier,
555-722-110

This document provides detailed information about how the MERLIN MAGIX Release
2.2 or earlier switch and telephone features operate. It is an important reference for
the planning, operation, and administration of MERLIN MAGIX CTI application
development. It is recommended reading for a MERLIN MAGIX CTI application
developer.

This document is provided with the MERLIN MAGIX switch hardware. Additional
copies are available at the Fulfillment Center.

About This Document

Programmer’s Guide Issue 2.2 xxvii

Network Manager’s Guide for MERLIN LEGEND Advanced Communications System

The above document describes the hardware, software, and configuration require-
ments for the MERLIN LEGEND Advanced Communications System PBX Driver. It
also provides information about the installation, administration, maintenance, and
troubleshooting of the MERLIN LEGEND PBX Driver. It is required reading for a
MERLIN LEGEND CTI system administrator.

This document is provided on the CD-ROM for the MERLIN LEGEND CTI product.

Network Manager’s Guide for MERLIN MAGIX Integrated System PBX Driver

The above document describes the hardware, software, and configuration require-
ments for the MERLIN MAGIX Integrated System PBX Driver. It also provides
information about the installation, administration, maintenance, and troubleshooting of
the MERLIN MAGIX PBX Driver. It is required reading for a MERLIN MAGIX CTI
system administrator.

This document is provided on the CD-ROM for the MERLIN MAGIX CTI product.

CentreVu Computer-Telephony − Telephony Services and CallVisor PC Installation

The above document provides detailed information for LAN administrators and service
technicians on how to install, load, and run CentreVu Telephony Services for Windows
and CallVisor PC products. It is required reading for LAN administrators and service
technicians.

This document is provided on the CD-ROM for the CentreVu Computer-Telephony
product.

CentreVu Computer-Telephony − Telephony Services Administration and Maintenance

The above document describes the computer hardware, software, and configuration
requirements for CentreVu Telephony Services for Windows, as well as information
about the administration of the Security Database. The Security Database validates
application requests against user privileges. The Security Database permits an
application executing on behalf of a user to monitor and control only specified devices.
It is required reading for a CentreVu Telephony Services administrator.

This document is provided on the CD-ROM for the CentreVu Computer-Telephony
product.

About This Document

xxviii Issue 2.2 Programmer’s Guide

TSAPI Model

Contents

Programmer’s Guide Issue 2.2 1-i

Definitions 1-1
Active Call 1-1
Alerting Call 1-1
Call (TSAPI programming object) 1-1
Call Identifier 1-1
Connection (TSAPI programming object) 1-2
Connection Identifier (TSAPI programming handle) 1-2
Device (TSAPI programming object) 1-2
Device Identifier (TSAPI programming handle) 1-2
Event 1-2
Held Call 1-2
Object 1-2
State 1-2

Client/Server Model 1-3
TSAPI Programming Objects 1-3

TSAPI Device Object 1-3
TSAPI Call Object 1-4
TSAPI Connection Object 1-5
TSAPI Connection State Model 1-5

Identifier Management 1-7

Contents

1-ii Issue 2.2 Programmer’s Guide

TSAPI Model

Programmer’s Guide Issue 2.2 1-1

This chapter contains an introduction to the TSAPI programming model. TSAPI is
based on the European Computer Manufacturers’ Association (ECMA) standard
for Computer Supported Telecommunications Applications (CSTA). This chapter
gives a summary explanation of the model. For a complete discussion, refer to
the Telephony Services API Manual. Readers that are well versed in the TSAPI
programming model may skip this chapter.

Definitions

Active Call
The call (at an extension) that is connected (in a talking state) at that extension.
The Connection (see Connection) for the Active Call is in the Connected State
(see the definition of Connection State in “TSAPI Connection Object” later in this
chapter).

Alerting Call
 A call that is either visually or audibly alerting at a Device. The Connection (see
Connection) for an Alerting Call is in the Alerting State. When the Device is a
telephone, the Alerting Call is ringing the telephone instrument.

Call (TSAPI programming object)
A Call is a communications relationship between two or more Devices. Note,
however, during call set-up and release, and at other times during a call, there
may be only one Device on the Call.

Call Identifier
A TSAPI programming handle that identifies a Call.

TSAPI Model

1-2 Issue 2.2 Programmer’s Guide

Connection (TSAPI programming object)
A relationship between a Call and a Device. A Connection is in one of a number
of states (alerting, held, connected, etc.). Note that when a Call connects (for
example) three Devices, there are three Connections for the Call. Each
Connection reflects the state of the Call at one of the Devices.

Connection Identifier (TSAPI programming
handle)

A TSAPI programming handle that identifies a Connection. A Call Identifier and a
Device Identifier comprise a TSAPI Connection Identifier.

Device (TSAPI programming object)
A device is an Object, which abstracts the interface between a user and
communications in the Switch. TSAPI allows a device to be a single endpoint
(such as a telephone), or multiple endpoints that form a group. Chapter 2 details
the subset of the TSAPI Devices that the MERLIN LEGEND and MERLIN MAGIX
switches support.

Device Identifier (TSAPI programming handle)
A TSAPI programming handle that identifies a Device.

Event
A message from a Switch to a Computer indicating that an occurrence of interest
to an Application (that typically has caused a change in the state of a Connection)
has occurred.

Held Call
A call (at an extension) that is held (in a hold state) at that extension. The
Connection (see Connection) for a Held Call is in the Hold State (see the
definition of Connection State in “TSAPI Connection Object” later in this chapter).

Object
TSAPI programming objects include Connections, Calls, and Devices. Each has
a corresponding programming handle, or identifier.

State
An object's current condition. Specifically, TSAPI Connections have an
associated state.

Client/Server Model

Programmer’s Guide Issue 2.2 1-3

Client/Server Model

TSAPI uses a client/server architecture to make telephony services available to
applications software. The application runs on a computer and typically plays the
role of a client, making requests of a server, which, in turn, relays these requests
on to a switch. Such requests often include monitoring extensions and controlling
connections.

TSAPI Services are independent of the specific CTI link connecting the switch
with the application. Since TSAPI is independent of the particular telephone
terminal types, the Switch must determine how to support a given TSAPI request
for its specific telephone types. For example, TSAPI does not specify how to
provide the Make Call Service for analog or ISDN telephones. A Switch will use
its existing service definitions to provide TSAPI Services on telephones where
that service already exists.

The Switch provides event reports, which allow a service requester to assess the
progress of its service requests.

TSAPI Programming Objects

The TSAPI model defines several Switching Sub-Domain Model Objects for use
in Application programming: Device, Call, and Connection.

TSAPI Device Object
The TSAPI model permits an application to monitor and control Devices of
various types (including telephones). In CSTA, a Device can refer to either a
physical device (such as buttons, lines, trunks, and stations) or a logical device
(such as groups of devices, and ACDs). Chapter 2 details the subset of these
Devices that the MERLIN LEGEND and MERLIN MAGIX switches support.

Devices have associated attributes, which allow applications to monitor and
control them.

TSAPI device attributes are:

§ Device Type - the MERLIN LEGEND and MERLIN MAGIX switches
support the following TSAPI Device Types (refer to the Telephony Services
Application Programming Interface (TSAPI) Version 2 for a complete list):

 Station - is the traditional telephone device.

 Trunk - a device that spans switches (or interfaces a switch to the
public network).

TSAPI Model

1-4 Issue 2.2 Programmer’s Guide

 Calling Group Queue This is a holding place for calls that are being
directed to one member of a group of stations when all the stations are
unavailable to receive the calls. TSAPI support for Calling Group
Queues was introduced in MERLIN MAGIX Release 1.5.

§ Device Class - An application may monitor or control TSAPI Devices in
the various Device Classes in different ways. TSAPI defines several
classes. MERLIN LEGEND and MERLIN MAGIX CTI support class Voice,
a device that is used to make audio calls.

§ Device Identifier - a TSAPI programming handle for a Device that allows
an application to uniquely identify each device. TSAPI identifies Devices
using static and/or dynamic identifiers:

 Static Device Identifier - A Static Device Identifier is stable over time. It
remains constant and unique as calls arrive at (and leave) the device. A
Static Device Identifier is typically the extension number for the Device.

 Dynamic Device Identifier - the MERLIN LEGEND and MERLIN MAGIX
CTI do not use dynamic device identifiers.

§ Device State - is a list of the Connection States for all the connections at
the Device. For information about Connection states, see “TSAPI
Connection Object” later in this chapter.

TSAPI Call Object
TSAPI applications can monitor and control calls (including call establishment and
release). In certain operations, such as conference and transfer, one Device in a
Call is replaced with another Device or two Calls are merged into a single Call. In
these situations, the TSAPI Call object is maintained as long as the
communications relationship remains across each operation (i.e. the call survives
transfer, conference, and forwarding operations). TSAPI Call object attributes are:

§ Call Identifier - a Call Identifier is a TSAPI programming handle that the
Switch assigns to each Call. The Call ID may or may not be unique among
all calls within a Switch, but coupled with a Device ID, the pair will form a
unique Connection ID within a Switching Sub-Domain. To allow reference
to a nascent call, the switch will assign a Call ID before a call is fully
established. For example, a switch will assign a Call ID to an incoming call
when the called Device is Alerting (the assignment is done before the call
is answered).

Certain Services merge multiple calls into a single call. Examples of such
TSAPI Services are Transfer and Conference. During operations of
Services that merge multiple calls, the call identifier may change, but the
call continues as a TSAPI object. The management of the call identifier is
described in “Identifier Management” later in this chapter

§ Call State - is a list of the Connection states for all the Connections that
are a part of the Call.

TSAPI Programming Objects

Programmer’s Guide Issue 2.2 1-5

TSAPI Connection Object
A Connection is a relationship between a Call and a Device. A TSAPI application
can control a Connection. For example, the TSAPI Services Hold Call,
RetrieveCall, and Clear Call all control Connections. Connections are TSAPI
programming objects with the following attributes:

ion Identifier - is a TSAPI handle that is made up of a Call Identifier and
Device Identifier. For a call, there are as many Connection identifiers as there
are associated devices. Similarly, for a device, there are as many Connection
identifiers as there are associated calls. The Connection Identifier is unique
within a Switch and within a single TSAPI server. A TSAPI application cannot
use a Connection Identifier until it has received the identifier from the Switch.

§ Connection State - is the state of a call at a Device. The Connection state
always refers to a single Call/Device relationship. Monitors report Events,
which are changes in Connection States for the monitored device.

TSAPI Connection State Model
Figure 1-1 shows a sample Connection state model. Note that since TSAPI is
switch-independent, and since switch features vary from switch to switch (and
therefore interact differently on different switches), there is no definitive TSAPI
Connection State model to which all switches comply.

Queued

Initiated

Null

Alerting

Failed

HeldConnected

Figure 1-1. Sample Connection State Model

The transitions between states, shown by arrows, form the basis for providing
Event Reports.

TSAPI Model

1-6 Issue 2.2 Programmer’s Guide

The TSAPI Connection states are defined as follows.

§ Null - the state where there is no relationship between the call and device.

§ Initiated - the state where the device is requesting service. Usually this
results in the creation of a call. Often this is thought of as the "dialing"
state.

§ Alerting - the state where a device is visually or audibly alerting.

§ Connected - the state where a device is connected to the communications
channel for a call (but is not a held call).

§ Held - the call is "on hold" at the Device.

§ Queued - the state where normal state progression has been stalled. For
example, a call being processed by an ACD that is waiting for an ACD
agent to become available is "queued."

§ Failed - the state where normal state progression has been aborted. A
"Failed" state can result because of failure to connect to the calling
(originator) device, failure to connect the called (destination) device, failure
to create the call, and other reasons.

 NOTE:
The MERLIN LEGEND and MERLIN MAGIX switches have additional
states, such as the associative states and held-for-transfer and held-for-
conference that the TSAPI model does not reflect. Be sure to read and
understand the treatment that TSAPI applications will see for these
MERLIN LEGEND and MERLIN MAGIX connection states.

A call can be modeled as a collection of Connection state machines. Signaling
causes changes in the connection state machines.

Certain operations involve changes to many Connections. TSAPI reports these
events (such as Transfer and Conference) in a single Event Report. Each TSAPI
Event Report defines which Connections have changed state.

Identifier Management

Programmer’s Guide Issue 2.2 1-7

Identifier Management

The Switching Function provides Connection Identifiers when either a new Call or
Device Identifier is needed. When a call is made the switch provides a
Connection Identifier. The switch then provides the Connection ID in any following
Event Reports that pertain to that call. Similarly, the switch provides Connection
IDs containing a Device ID for a device involved in a call.

The switch updates identifiers when needed. If a Conference or Transfer
(merging two calls) changes a Call ID, then the switch provides Event Reports
containing Connection IDs that link the old call identifier to the new identifier. Both
Service Acknowledgments and Event Reports may contain information necessary
to manage identifiers.

Identifiers cease to be valid when their context vanishes. If a call ends, its call
identifier is no longer valid. Many Event Reports and Services specify when a
Connection Identifier has lost or will lose its context.

Identifiers can be reused. Once an identifier has lost its context it may be re-used
to identify another object. Most implementations will not reuse identifiers
immediately.

In the TSAPI model, Call and Device Identifiers can be, but are not guaranteed to
be, globally unique. The TSAPI model ensures that connections (the combination
of Call and Device Identifier) are globally unique within a Switch. In the MERLIN
LEGEND and MERLIN MAGIX CTI implementations, both Call and Device
Identifiers are unique within the switch, but an application that makes use of this
fact will not be programmed in a switch-independent manner.

TSAPI Model

1-8 Issue 2.2 Programmer’s Guide

MERLIN LEGEND/MERLIN
MAGIX TSAPI Overview

Contents

2-i Issue 2.2 Programmer’s Guide

Introduction 2-1
Applications 2-2
n MERLIN LEGEND and MERLIN MAGIX Release 1.0 2-4
n MERLIN MAGIX Release 1.5 2-5
n MERLIN MAGIX Release 2.0 2-5
n MERLIN MAGIX Release 2.1 2-6
Switch Environment 2-6
n Extension Types on MERLIN LEGEND 2-7
n Extension Types on MERLIN MAGIX 2-7
n Normal, Responding Mode 2-7
n Button Types on MERLIN LEGEND and MERLIN MAGIX 2-7
LAN & Computing Environment 2-9
Architecture 2-10
n CSTA Architectural Considerations 2-11

Device Object 2-11
Call Object 2-12
Connection Object 2-12

MERLIN LEGEND and MERLIN MAGIX CTI
Capacity and Limits 2-12

MERLIN LEGEND and MERLIN MAGIX Support
for TSAPI 2-13

Programming Guidelines for MERLIN LEGEND
and MERLIN MAGIX CTI Applications 2-21
n Recommendations for TSAPI Application Use 2-21

Direct Line Console (DLC) Configuration 2-21
Microphone Mute Recommendation 2-21
TSAPI Application Use with Existing Voice Mail Systems 2-21

Contents

2-ii Issue 2.2 Programmer’s Guide

Monitoring 2-22
Confirmation Events & Unsolicited Event Ordering 2-22
Transferring or Conferencing a Call with Original Call
Information (Consultation Call) 2-23

Private Data in MERLIN MAGIX Release 2.0 2-24
Private Data in MERLIN MAGIX Release 2.1 and Later 2-24
Programming for Busy Conditions 2-25
Trunk Events for External Connections 2-26

n Feature Interactions 2-26
n Shared System Access Interactions 2-26
n Coverage Button Interactions 2-28
n Direct Facility Termination (DFT) and Direct Pool Termination

(DPT) Interactions 2-28
n Networking 2-29
MERLIN LEGEND and MERLIN MAGIX Private
Data Libraries 2-29
n MERLIN LEGEND Private Data Library & Collected Digits 2-29
n MERLIN MAGIX Private Data Library & Collected Digits 2-30
n Collected Digit System Operation 2-30
n MERLIN LEGEND and MERLIN MAGIX Private Data

Libraries and Original Call Information 2-31
n MERLIN MAGIX Private Data and Original Call Information

for Forwarded and Covered Calls 2-32
n MERLIN MAGIX Private Data Library and Trunk ID 2-33
n MERLIN MAGIX Private Data Library and Account Codes 2-33
Extracting Private Data from Events 2-34

MERLIN LEGEND/MERLIN
MAGIX TSAPI Overview

Programmer’s Guide Issue 2.2 2-1

Introduction

Telephony Services integrates telephony monitoring and control with software
applications on a local area network. The Telephony Server integrates the
existing telephones on users’ desktops with telephony-based or telephony-
enabled applications. Applications developers use the Telephony Services
Applications Programming Interface (TSAPI) to program these applications.
These applications can either reside on the server (where they are referred to as
server-based applications) or on desktop PCs (where they are referred to as
client-based applications).

Telephony Services is a distributed client/server application environment that
logically integrates the telephone on a user’s desk with an application running on
his or her computer (see Figure 2-1.) The system accomplishes this integration
without the need for special telephones, PC circuit boards, or wiring at the user’s
desktop.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-2 Issue 2.2 Programmer’s Guide

MERLIN LEGEND or
MERLIN MAGIX PBX

CTI LinkTelephone
Network

MLX,
4400,
ETR,
ATL,
SLS

MLX,
4400,
ETR,
ATL,
SLS

Windows 95
Windows 98
Windows Me
Windows NT
Windows 2000

TCP/IP LAN

CentreVu
Telephony Server

Windows 95
Windows 98
Windows Me
Windows NT
Windows 2000

Figure 2-1. MERLIN LEGEND/MERLIN MAGIX CentreVu Telephony

Services Configuration

A CTI link connects the MERLIN LEGEND or MERLIN MAGIX switch to the
telephony server. Applications use the TSAPI library to pass telephony requests
to the server, which, in turn, passes these requests across the CTI link to the
switch.

Applications

The following types of applications might take advantage of TSAPI services to
operate in a MERLIN LEGEND or MERLIN MAGIX CTI environment:

n Call Center or Customer Service Center

n Call Logging

n Call Management

n Call Screening

n Conference Management

n Custom Call Distribution

Applications

Programmer’s Guide Issue 2.2 2-3

n Telemarketing Agent Management

n Preview Outbound Dialing Campaigns

n Screen pop using caller-ID, called number (DNIS), or information collected
by voice prompter (collected digits1)

n Boss/Secretary

n Call Tracking, Reporting

n Directory

n Telephony Enabling Non-CTI applications (using middleware)

While many applications might be implemented as either client or server
applications, certain factors may result in one approach being more satisfactory,
economical, or more manageable than the other. Consider the following factors:

n Round-the-clock application availability: Implementing an application
on the server could eliminate the problem of a key application being
inaccessible when a desktop PC is turned off.

n Backup: System administrators (or some automatic procedure) typically
back up servers on a regular basis while individual users determine when
to back up desktop PCs.

n Scarce or expensive resources: Such resources can be centralized,
especially when light usage makes their inclusion in the client PC
impractical or costly.

n Single instance running on behalf of multiple users: Certain
applications (such as tracking and billing) typically run on behalf of many
users. A single application may be more manageable than many copies of
a single application, particularly when the data must be combined for
reports.

n Centralized, shared data: Data files on a server are available to many
users and more manageable than many copies of a database.

MERLIN LEGEND and MERLIN MAGIX CTI support TSAPI applications in
conjunction with certain types of extension devices. The sections “Extension
Types” and “Button Types” later in this chapter provide further information about
supported devices. Appendix A provides a table showing CTI support for the
various MERLIN LEGEND and MERLIN MAGIX station types.

1 Some industry publications refer to collected digits as “prompted digits.”

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-4 Issue 2.2 Programmer’s Guide

MERLIN LEGEND and MERLIN MAGIX
Release 1.0

In the MERLIN LEGEND or MERLIN MAGIX Release 1.0 environment,
applications may find the following CTI features to be especially useful:

n “power dial” from a System Access (SA) button - An application originates
calls from a specified extension to an external or intercom number. A user
might identify a name or number in an application and use a mouse to
“point and click.” The application then requests the switch to originate the
call.

n “screen pop” for an incoming voice call to an SA button - An application
uses calling number (Automatic Number Identification (ANI) and Individual
Call Line Identification (ICLID) for external calls2), called number (Dialed
Number Identification Service (DNIS) for external calls3), or collected digits
to pop a screen for an alerting call. MERLIN LEGEND CTI provides events
that support application screen pop either when a call alerts, or when it is
answered. Events support application screen pop for calls that arrive
through:

 DGC distribution

 ISDN PRI “routing by dial plan”

 Direct Inward Dialing (DID)

 transfer after answer at a voice response unit or VMI port; or

 transfer after answer at an unmonitored DLC or QCC4.

n Call control on SA buttons - An application can answer, hold, or retrieve a
call; clear a connection; make a call (including consultation); transfer or
conference a consultation call; transfer a call on hold for transfer; or
conference a call on hold for conference (or transfer5). When an
application makes a consultation call, an application monitoring the
extension receiving the call receives the original caller’s
ANI/ICLID/extension information, DNIS, and original collected digits. Table
2-1 details the availability of control and monitoring for the different types
of SA buttons. Applications cannot control calls on Shared SA buttons
(SSA buttons.)

2 External calls must arrive on PRI/BRI facilities provisioned to provide ANI or loop start trunks that

provide ICLID.
3 Called number is the local called extension in the case of a local caller or DNIS in the case of an

external caller. DNIS in the MERLIN LEGEND or MERLIN MAGIX switch is the group extension
number.

4 Non-CTI operation is used to answer and transfer the calls at the DLC/QCC, announcement
units, and voice response units.

5 As the manual pages describing the services will show in more detail, an application can use the
conference service to conference a call that is on hold for either transfer or conference.

Applications

Programmer’s Guide Issue 2.2 2-5

A MERLIN LEGEND private data library provides collected digits in the
CSTADeliveredEvent and CSTAEstablishedEvent. Refer to “MERLIN LEGEND
and MERLIN MAGIX Private Data Libraries” later in this chapter for more
information on the private data libraries.

MERLIN MAGIX Release 1.5

In a MERLIN MAGIX Release 1.5 environment, applications have access to all of
the functionality provided by MERLIN LEGEND and MERLIN MAGIX Release
1.0, plus the following:

n Queue information –An application can monitor a Calling Group (split) to
receive information about calls entering and leaving the queue.

n Agent information – An application monitoring a Calling Group member
(agent) will be notified when the agent logs in, logs out, or enters After Call
Work, and may also set the state of the agent.

MERLIN MAGIX Release 2.0

In a MERLIN MAGIX Release 2.0 environment, applications have access to all of
the functionality provided by MERLIN MAGIX Release 1.5, plus the following:

n Queue information – An application can obtain a list of the administered
Calling Groups, a list of administered Group Members (agents) within a
Calling Group, and a list of lines and trunks assigned to a Calling Group.
In addition, the application can query the status of the Calling Group queue
to determine the number of queued calls.

n Agent control – An application can query or set an agent’s status (i.e.,
Logged In, Logged Out, or Work Not Ready).

n Call control on Coverage, Line and Pool buttons – An application can
answer, hold, or retrieve a call; clear a connection; make a consultation
call; transfer or conference a consultation call; transfer a call on hold for
transfer; or conference a call on hold for conference (or transfer5). An
application can not originate a call on these buttons. When an application
makes a consultation call, an application monitoring the extension
receiving the call receives the original caller’s ANI/ICLID/extension
information, DNIS, and original collected digits. Table 2-2 details the
availability of control and monitoring for the different types of buttons.
Applications cannot control calls on Shared SA buttons (SSA buttons.)

n Tip/Ring (Single Line Set) control – An application can monitor a Single
Line set and can hold or retrieve a call, clear a call, transfer or conference
a consultation call; transfer a call on hold for transfer; or conference a call
on hold for conference (or transfer). A Single Line set will not have access
to the cstaAnswerCall() or cstaMakeCall() services.

n Deflect call capability – An application can redirect an unanswered calling
group call to a specific agent, or to another queue.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-6 Issue 2.2 Programmer’s Guide

n Account code information – An application can receive Account code
information when an external call is cleared.

n Feature events – An application can receive notification when a user has
activated or deactivated the Do Not Disturb feature.

MERLIN MAGIX Release 2.1

In a MERLIN MAGIX Release 2.1 environment, applications have access to all of
the functionality provided by MERLIN MAGIX Release 2.0, plus the following:

n Supplementary Services – An application can set or query the status of
the Do Not Disturb feature or a station’s Message Waiting Indicator.

n Snapshot Device Service – An application can take a “snapshot” of calls
appearing at an extension.

n Enhanced Agent Control – An application can set or query the status of a
calling group agent with respect to a specific calling group.

n Enhanced Call Deflection – An application can redirect an unanswered
calling group call to any extension that is available to receive the call.

n Additional Escape Services – An application can use new escape services
to obtain additional switch configuration data.

A MERLIN MAGIX private data library provides collected digits in the CSTADeliveredEvent,
CSTAEstablishedEvent and CSTAQueuedEvent, and account codes in the
CSTAConnectionClearedEvent. Refer to the section “MERLIN LEGEND and MERLIN
MAGIX Private Data Libraries” later in this chapter for more information.

Switch Environment

MERLIN LEGEND/MERLIN MAGIX CTI is available on MERLIN LEGEND
switches (Release 5.0 and later) and MERLIN MAGIX switches operating in
Hybrid/PBX Mode. (MERLIN LEGEND/MERLIN MAGIX CTI is not available on
MERLIN LEGEND and MERLIN MAGIX switches in Key Mode, nor on MERLIN
LEGEND and MERLIN MAGIX switches in “behind the switch” mode). MERLIN
LEGEND/MERLIN MAGIX CTI is available only on the domestic version.

The physical CTI link to the MERLIN LEGEND or MERLIN MAGIX switches is
MLX extension wiring (4 pair category 3). This requires an ISDN BRI interface
card in the server and an MLX extension port on the MERLIN LEGEND or
MERLIN MAGIX switch. No device other than the CTI link can be connected to
the MLX CTI port on the switch.

Switch Environment

Programmer’s Guide Issue 2.2 2-7

Extension Types on MERLIN LEGEND

The MERLIN LEGEND switch will monitor and control SA buttons on a variety of
MLX, ETR and ATL extension sets equipped with built-in speakerphone (BIS.)
The sets must be directly connected to the MERLIN LEGEND switch. The
MERLIN LEGEND switch does not monitor and control BRI (7500) or SLS sets.
An application cannot monitor/control calls at other types of voice facilities (such
as QCCs, trunks, MLX adjuncts, etc.)

Although the MERLIN LEGEND switch restricts the extension types that an
application can monitor or control, call events provide information about any type
of telephone that connects to a monitored device.

Appendix A provides a list of the supported extension types for MERLIN
LEGEND.

Extension Types on MERLIN MAGIX

The MERLIN MAGIX switch will monitor and control buttons on a variety of MLX,
4400-series, and ETR extension sets equipped with built-in speakerphone (BIS.)
Beginning with MERLIN MAGIX Release 2.0, single line sets (SLSs) may also be
monitored and controlled. The sets must be directly connected to the MERLIN
MAGIX switch. The MERLIN MAGIX switch does not monitor and control BRI
(7500) sets. An application cannot monitor/control calls at other types of voice
facilities (such as QCCs, trunks, MLX adjuncts, etc.)

Appendix A provides a list of the supported extension types for MERLIN MAGIX.

Normal, Responding Mode

A telephone must be in “Normal, Responding Mode” (see Glossary) for the
MERLIN MAGIX switch to successfully complete a call control request at that
telephone. A telephone need not be in “Normal, Responding Mode” for an
application to successfully monitor that telephone.

Button Types on MERLIN LEGEND and
MERLIN MAGIX

The MERLIN LEGEND (Releases 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches provide monitoring and call control for calls appearing on
non-shared SA buttons. These switch releases do not provide call control on any
other type of button.

MERLIN MAGIX Release 2.0 and later provide monitoring and call control for
calls appearing on non-shared SA buttons, and also provides monitoring and call
control for calls appearing on Coverage, Line, and Pool buttons. Tables 2-1 and
2-2 show CTI monitoring and control capabilities.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-8 Issue 2.2 Programmer’s Guide

Table 2-1. MERLIN LEGEND (Releases 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) CTI Control and Monitoring for Button
Types

Button Type

CTI Application can
control a call on this

type button?

CTI application
receives events for
call activity at this

type button?
SA-Ring yes yes

SA-Voice yes yes

SA-Originate-Only-Ring yes yes

SA-Originate-Only-Voice yes yes

Shared SA no partial6

DFT no partial6

Pool no partial6

Cover no partial6

Loop no no

Table 2-2. MERLIN MAGIX Releases 2.0 and later CTI Control and
Monitoring for Button Types

Button Type

CTI Application can
control a call on this

type button?

CTI application
receives events for
call activity at this

type button?
SA-Ring yes yes

SA-Voice yes yes

SA-Originate-Only-Ring yes yes

SA-Originate-Only-Voice yes yes

Shared SA no partial6

DFT yes7 yes

Pool yes7 yes

Cover yes7 yes

Loop no no

6 Does not supply CSTADeliveredEvent.
7 These button types can not use the cstaMakeCallService()

LAN & Computing Environment

Programmer’s Guide Issue 2.2 2-9

 NOTE:
An application will receive events only for calls present at the button types
shown above.

There are a variety of ways that an incoming CO call might appear at an SA
button on an extension and provide events to a monitoring application:

n the extension is a DGC group member

n the call arrived on a PRI trunk with Routing By Dial Plan administered

n the CO call was transferred from another extension

n the call is an arriving remote access call

n DID Routing

LAN & Computing Environment

MERLIN LEGEND/MERLIN MAGIX CTI will operate with CentreVu Telephony
Services for Windows, Release 3.1 and later. For more information about
Telephony Services implementations, refer to Telephony Services in the
“Terminology” section of About This Document.

Prior to MERLIN MAGIX Release 2.1, the MERLIN LEGEND and MERLIN
MAGIX PBX Drivers operated on servers or work stations running Windows NT
4.0. Beginning with MERLIN MAGIX Release 2.1 the MERLIN MAGIX PBX
Driver is supported on Windows 2000.

All clients that operate with CentreVu Telephony Services may be used with
MERLIN LEGEND/MERLIN MAGIX CTI. At the time of writing, those clients
included Microsoft Windows® 3.1, Windows for Workgroups 3.11, Windows NT,
Windows® 95, Windows® 98, Windows® 2000, UnixWare®, and HP-UX. Since
backward compatible clients may be released on an incremental basis, there may
be additional clients that also operate with CentreVu Telephony Services.

MERLIN MAGIX CTI private data versions 1-3 are provided on the Windows 95,
Windows 98, Windows Me, Windows 2000, and Windows NT clients.

TCP/IP is used as the LAN protocol between the clients and the Telephony
Server

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-10 Issue 2.2 Programmer’s Guide

Architecture

MERLIN LEGEND and MERLIN MAGIX CTI use the Telephony Services
architecture and platform infrastructure.

The Telephony Services software consists of two important modules. The
Telephony Server is a switch-independent module that manages communication
between client workstations and the second major module, the PBX Driver. The
PBX Driver is a switch-specific module that interfaces TSAPI with the switch-
specific CTI link.

TSAPI is based on the European Computer Manufacturing Association (ECMA)
standard for Computer-Supported Telecommunications Applications (CSTA). An
application developer may use the TSAPI library to develop client-based or
server-based applications.

The MERLIN LEGEND and MERLIN MAGIX switches each support a single CTI
link.

System managers use the existing Telephony Services administration software to
manage and administer the switch independent portions of the system.

A Windows OA&M client application provides maintenance and administration
access to the MERLIN LEGEND PBX Driver or MERLIN MAGIX PBX Driver.

Architecture

Programmer’s Guide Issue 2.2 2-11

Windows 98
Windows 2000

Figure 2-2. CentreVu Computer-Telephony Software Architecture

CSTA Architectural Considerations

TSAPI is based on the ECMA CSTA standard. MERLIN LEGEND and MERLIN
MAGIX CTI support the following TSAPI objects and related concepts:

Device Object
TSAPI uses Device Identifiers (DeviceID) to refer to device objects. CTI
applications can control and monitor extension devices. In MERLIN MAGIX
Release 1.5, support was added to monitor Calling Group Queues.

Event reports may contain identifiers for trunks, but applications cannot directly
control or monitor trunk connections.

All MERLIN LEGEND and MERLIN MAGIX TSAPI device identifiers are TSAPI
static device IDs. MERLIN LEGEND and MERLIN MAGIX CTI only supports a
Device Class of “Voice.”

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-12 Issue 2.2 Programmer’s Guide

Call Object
TSAPI uses Call Identifiers (CallID) to refer to call objects. TSAPI call identifiers
map to MERLIN LEGEND or MERLIN MAGIX switch Call Identifiers. These
TSAPI call identifiers uniquely identify a call within the MERLIN LEGEND or
MERLIN MAGIX switch.

Connection Object
TSAPI uses Connection Identifiers (ConnectionID) to refer to the connection of a
device to a call. In the programming sense, a ConnectionID is a structure
containing a DeviceID and CallID component. A connection identifier identifies the
appearance (or appearances) of a call at a device.

MERLIN LEGEND and MERLIN
MAGIX CTI Capacity and Limits

The MERLIN LEGEND and MERLIN MAGIX CTI configurations each support a
single CTI link.

Table 2-3. MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) CTI Capacity Limits

Parameter Limit
Maximum number of monitored
extensions

136

Maximum number of CTI links 1

The MERLIN LEGEND PBX Driver permits applications to monitor up to 136
extensions. Multiple applications may monitor the same extension.

Table 2-4. MERLIN MAGIX (Release 2.0 and later) CTI Capacity Limits

Parameter Limit
Maximum number of monitored
extensions

200

Maximum number of monitored DGC
queues

32

Maximum number of CTI links 1

MERLIN LEGEND and MERLIN MAGIX Support for
TSAPI

Programmer’s Guide Issue 2.2 2-13

The MERLIN MAGIX Release 2.0 (and later) switch permits applications to
monitor up to 200 extensions and 32 DGC queues. Multiple applications may
monitor the same extension or queue.

MERLIN LEGEND and MERLIN
MAGIX Support for TSAPI

MERLIN LEGEND/MERLIN MAGIX CTI supports various TSAPI functions and
events (but not all of them). The supported TSAPI services and events are
shown in Table 2-5.

There are parameters in each service request and event. Refer to the service
description or event description page to determine the parameters that MERLIN
LEGEND/MERLIN MAGIX CTI supports.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-14 Issue 2.2 Programmer’s Guide

Table 2-5. Support for TSAPI Services and Events

 TSAPI Control Functions and Events
√ acsOpenStream() & ACSOpenStreamConfEvent
√ acsCloseStream()& ACSCloseStreamConfEvent
√ acsAbortStream()
√ acsGetEventBlock()
√ acsGetEventPoll()
√ acsGetFile() [where provided in client library]
√ acsSetESR() [where provided in client library]
√ acsEventNotify() [where provided in client library]
√ acsFlushEventQueue()
√ acsEnumServerNames()
√ acsQueryAuthInfo()
√ ACSUniversalFailureConfEvent
√ ACSUniversalFailureEvent
√ cstaGetAPICaps() & CSTAGetAPICapsConfEvent
√ cstaGetDeviceList() & CSTAGetDeviceListConfEvent
√ cstaQueryCallMonitor() & CSTAQueryCallMonitorConfEvent

 TSAPI Call Control Services and Events -

MERLIN LEGEND (Release 5.0 and later) and
MERLIN MAGIX (Releases 1.0 and 1.5)

 cstaAlternateCall() & CSTAAlternateCallConfEvent
√ cstaAnswerCall() & CSTAAnswerCallConfEvent
 cstaCallCompletion() & CSTACallCompletionConfEvent
 cstaClearCall() & CSTAClearCallConfEvent

√ cstaClearConnection() & CSTAClearConnectionConfEvent
√ cstaConferenceCall() & CSTAConferenceCallConfEvent
√ cstaConsultationCall() & CSTAConsultationCallConfEvent
 cstaDeflectCall() & CSTADeflectCallConfEvent
 cstaGroupPickupCall() & CSTAGroupPickupCallConfEvent

√ cstaHoldCall() & CSTAHoldCallConfEvent
√ cstaMakeCall() & CSTAMakeCallConfEvent
 cstaMakePredictiveCall() & CSTAMakePredictiveCallConfEvent
 cstaPickupCall() & CSTAPickupCallConfEvent
 cstaReconnectCall() & CSTAReconnectCallConfEvent

√ cstaRetrieveCall() & CSTARetrieveCallConfEvent
√ cstaTransferCall() & CSTATransferCallConfEvent

MERLIN LEGEND and MERLIN MAGIX Support for
TSAPI

Programmer’s Guide Issue 2.2 2-15

 TSAPI Call Control Services and Events - MERLIN MAGIX Release 2.0 and
later

 cstaAlternateCall() & CSTAAlternateCallConfEvent
√ cstaAnswerCall() & CSTAAnswerCallConfEvent
 cstaCallCompletion() & CSTACallCompletionConfEvent
 cstaClearCall() & CSTAClearCallConfEvent

√ cstaClearConnection() & CSTAClearConnectionConfEvent
√ cstaConferenceCall() & CSTAConferenceCallConfEvent
√ cstaConsultationCall() & CSTAConsultationCallConfEvent
√ cstaDeflectCall() & CSTADeflectCallConfEvent
 cstaGroupPickupCall() & CSTAGroupPickupCallConfEvent

√ cstaHoldCall() & CSTAHoldCallConfEvent
√ cstaMakeCall() & CSTAMakeCallConfEvent
 cstaMakePredictiveCall() & CSTAMakePredictiveCallConfEvent
 cstaPickupCall() & CSTAPickupCallConfEvent
 cstaReconnectCall() & CSTAReconnectCallConfEvent

√ cstaRetrieveCall() & CSTARetrieveCallConfEvent
√ cstaTransferCall() & CSTATransferCallConfEvent

 TSAPI Supplementary Services and Events - MERLIN MAGIX Release 1.5
 cstaSetMsgWaitingInd() & CSTASetMwiConfEvent
 cstaSetDoNotDisturb() & CSTASetDndConfEvent
 cstaSetForwarding() & CSTASetFwdConfEvent

√ cstaSetAgentState() & CSTASetAgentStateConfEvent
 cstaQueryMsgWaitingInd() & CSTAQueryMwiConfEvent
 cstaQueryDoNotDisturb() & CSTAQueryDndConfEvent
 cstaQueryFwd() & CSTAQueryFwdConfEvent
 cstaQueryAgentState() & CSTAQueryAgentStateConfEvent
 cstaQueryLastNumber() & CSTAQueryLastNumberConfEvent
 cstaQueryDeviceInfo() & CSTAQueryDeviceInfoConfEvent

 TSAPI Supplementary Services and Events - MERLIN MAGIX Release 2.0
 cstaSetMsgWaitingInd() & CSTASetMwiConfEvent
 cstaSetDoNotDisturb() & CSTASetDndConfEvent
 cstaSetForwarding() & CSTASetFwdConfEvent

√ cstaSetAgentState() & CSTASetAgentStateConfEvent
 cstaQueryMsgWaitingInd() & CSTAQueryMwiConfEvent
 cstaQueryDoNotDisturb() & CSTAQueryDndConfEvent
 cstaQueryFwd() & CSTAQueryFwdConfEvent

√ cstaQueryAgentState() & CSTAQueryAgentStateConfEvent
 cstaQueryLastNumber() & CSTAQueryLastNumberConfEvent
 cstaQueryDeviceInfo() & CSTAQueryDeviceInfoConfEvent

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-16 Issue 2.2 Programmer’s Guide

 TSAPI Supplementary Services and Events - MERLIN MAGIX Release 2.1 and
later

√ cstaSetMsgWaitingInd() & CSTASetMwiConfEvent
√ cstaSetDoNotDisturb() & CSTASetDndConfEvent
 cstaSetForwarding() & CSTASetFwdConfEvent

√ cstaSetAgentState() & CSTASetAgentStateConfEvent
√ cstaQueryMsgWaitingInd() & CSTAQueryMwiConfEvent
√ cstaQueryDoNotDisturb() & CSTAQueryDndConfEvent
 cstaQueryFwd() & CSTAQueryFwdConfEvent

√ cstaQueryAgentState() & CSTAQueryAgentStateConfEvent
 cstaQueryLastNumber() & CSTAQueryLastNumberConfEvent
 cstaQueryDeviceInfo() & CSTAQueryDeviceInfoConfEvent

 TSAPI Monitoring Services and Events

√ cstaMonitorDevice()
 cstaMonitorCall()
 cstaMonitorCallsViaDevice()

√ CSTAMonitorConfEvent
√ cstaMonitorStop() & CSTAMonitorStopConfEvent
 cstaChangeMonitorFilter() & CSTAChangeMonitorFilterConfEvent

√ CSTAMonitorEndedEvent

 TSAPI Call Events -

MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX Release 1.0
 CSTACallClearedEvent

√ CSTAConferencedEvent
√ CSTAConnectionClearedEvent
√ CSTADeliveredEvent
 CSTADivertedEvent

√ CSTAEstablishedEvent
 CSTAFailedEvent

√ CSTAHeldEvent
√ CSTANetworkReachedEvent
 CSTAOriginatedEvent
 CSTAQueuedEvent

√ CSTARetrievedEvent
√ CSTAServiceInitiatedEvent
√ CSTATransferredEvent

MERLIN LEGEND and MERLIN MAGIX Support for
TSAPI

Programmer’s Guide Issue 2.2 2-17

 TSAPI Call Events - MERLIN MAGIX Release 1.5 and later
 CSTACallClearedEvent

√ CSTAConferencedEvent
√ CSTAConnectionClearedEvent
√ CSTADeliveredEvent
√ CSTADivertedEvent
√ CSTAEstablishedEvent
 CSTAFailedEvent

√ CSTAHeldEvent
√ CSTANetworkReachedEvent
 CSTAOriginatedEvent

√ CSTAQueuedEvent
√ CSTARetrievedEvent
√ CSTAServiceInitiatedEvent
√ CSTATransferredEvent

 TSAPI Agent Status Events - MERLIN MAGIX Release 1.5

√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
 CSTANotReadyEvent
 CSTAReadyEvent

√ CSTAWorkNotReadyEvent
 CSTAWorkReadyEvent

 TSAPI Agent Status Events - MERLIN MAGIX Release 2.0

√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
√ CSTANotReadyEvent
√ CSTAReadyEvent
√ CSTAWorkNotReadyEvent
 CSTAWorkReadyEvent

 TSAPI Agent Status Events - MERLIN MAGIX Release 2.1 and later

√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
√ CSTANotReadyEvent
√ CSTAReadyEvent
√ CSTAWorkNotReadyEvent
√ CSTAWorkReadyEvent

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-18 Issue 2.2 Programmer’s Guide

 TSAPI Feature Event Reports - MERLIN MAGIX Release 2.0
 CSTACallInfoEvent

√ CSTADoNotDisturbEvent
 CSTAForwardingEvent
 CSTAMessageWaitingEvent

 TSAPI Feature Event Reports - MERLIN MAGIX Release 2.1 and later

√ CSTACallInfoEvent
√ CSTADoNotDisturbEvent
 CSTAForwardingEvent
 CSTAMessageWaitingEvent

 TSAPI Escape Services - MERLIN MAGIX Release 2.0

√ cstaEscapeService() & CSTAEscapeServiceConfEvent
√ CSTAPrivateEvent
√ CSTAPrivateStatusEvent
 CSTAEscapeServiceReq
 cstaEscapeServiceConf()

 TSAPI Snapshot Services - MERLIN MAGIX Release 2.1 and later

 cstaSnapshotCallReq() & CSTASnapshotCallConfEvent
√ cstaSnapshotDeviceReq() & CSTASnapshotDeviceConfEvent

 MERLIN MAGIX Escape Services - MERLIN MAGIX Release 2.0

√ mlGetDGCGroupList()
√ mlGetDGCGroupMemberList()
√ mlGetDGCGroupTrunkList()
√ mlQueryDeviceName()
√ mlQueryDGCQueueStatus()
√ mlQueryTrunkStatus()

 MERLIN MAGIX Escape Services - MERLIN MAGIX Release 2.1 and later

√ mlGetDGCGroupList()
√ mlGetDGCGroupMemberList()
√ mlGetDGCGroupTrunkList()
√ mlQueryDeviceName()
√ mlQueryDGCGroupDAUInfo()
√ mlQueryDGCGroupParameters()
√ mlQueryDGCQueueStatus()
√ mlQueryTrunkStatus()

MERLIN LEGEND and MERLIN MAGIX Support for
TSAPI

Programmer’s Guide Issue 2.2 2-19

The detailed descriptions of the TSAPI functions and events are split into several
chapters:

n Chapter 3: This chapter contains detailed descriptions for control services
and events that an application uses to start, stop, and manage a telephony
services communication stream. Certain functions and events in this
chapter are API Control Services (and have names prefixed with ACS),
while others derive from CSTA (and are prefixed with CSTA).

In addition, there are a number of TSAPI services that are implemented
entirely in the client libraries and do not require any interaction with the
MERLIN LEGEND or MERLIN MAGIX switch. MERLIN LEGEND/MERLIN
MAGIX CTI supports these services and while an application may use
these services, Chapter 3 does not contain detailed manual pages for
them (refer to Telephony Services Application Programming Interface
(TSAPI) Version 2). Chapter 3 does list the services and events that are in
this category.

n Chapter 4: This chapter contains detailed descriptions for the services that
an application uses to control calls.

n Chapter 5: This chapter contains detailed descriptions for the
supplementary services that an application uses to request or change
agent or switch feature status.

n Chapter 6: This chapter contains detailed descriptions for the services that
an application uses to monitor devices.

n Chapter 7: This chapter contains detailed descriptions for the services that
an application uses to take a snapshot of calls and call states at a device.

n Chapter 8: This chapter contains detailed descriptions of the call events
that the MERLIN LEGEND and MERLIN MAGIX switches provide for a
monitored device and calls.

n Chapter 9: This chapter contains detailed descriptions of the Feature
Events that the MERLIN MAGIX switch provides for a monitored device.

n Chapter 10: This chapter contains detailed descriptions of the Agent Status
Events that the MERLIN MAGIX switch provides for a monitored device.

n Chapter 11: This chapter contains detailed descriptions of the escape
services that are supported in MERLIN MAGIX Release 2.0 and later.

n Chapter 12: This chapter provides TSAPI event flows for a variety of
scenarios.

The MERLIN LEGEND and MERLIN MAGIX switches do not support any TSAPI
service or event that is not specifically cited in this book.

MERLIN LEGEND and MERLIN MAGIX CTI provide TSAPI version 2.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-20 Issue 2.2 Programmer’s Guide

 NOTE:
TSAPI versions should not be confused with Telephony Services or
MERLIN LEGEND or MERLIN MAGIX product release numbers. A
Telephony Services Product Release (such as Release 2 Telephony
Services) refers to a specific release of the product software. TSAPI, one
component of the product, undergoes modification over time. The TSAPI
modifications are called “versions.” Thus, the TSAPI version numbers are
independent of the Telephony Services product release numbers. A PBX
Driver in the Telephony Services architecture supports a set of TSAPI
versions. Thus, while CentreVu Telephony Services supports TSAPI
versions 1 and 2, the MERLIN LEGEND PBX Driver and MERLIN MAGIX
PBX Driver only support TSAPI version 2.

Programming Guidelines for MERLIN LEGEND and
MERLIN MAGIX CTI Applications

Programmer’s Guide Issue 2.2 2-21

Programming Guidelines for MERLIN
LEGEND and MERLIN MAGIX CTI
Applications

Recommendations for TSAPI Application Use

The following sections note certain configuration recommendations that apply
when TSAPI applications are in use.

Direct Line Console (DLC) Configuration

DLCs are used for a variety of purposes. It is important that the role of the DLC in
the presence of TSAPI applications be clearly defined. In some uses, such as a
DGC supervisor, the DLC may be a monitored station. This lets the DGC
supervisor run the same CTI application as the group members. In other cases,
such as a receptionist who transfers all incoming calls to customer service
representatives, it may not be desirable to monitor the DLC.

Microphone Mute Recommendation
TSAPI applications should never be used at an extension with the microphone
mute (MIC-MUTE) feature enabled.

 NOTE:
Application programmers should provide this recommendation in their
product documentation.

TSAPI Application Use with Existing Voice Mail
Systems

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, some existing voice mail systems may be configured in
such a way as to conserve SA buttons. As a result, incoming calls arrive on LINE
buttons, not SA buttons, making it impossible for an application to provide screen
pops. Applications providers must be aware that a change in customer
configuration is necessary in this case to take full advantage of TSAPI features.

Beginning with MERLIN MAGIX Release 2.0, LINE buttons receive the supported
events and thus the above restriction no longer applies.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-22 Issue 2.2 Programmer’s Guide

Monitoring
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application cannot use TSAPI to monitor or control a
VMI (voice prompting) port.

Beginning with MERLIN MAGIX Release 2.0 , an application can use TSAPI to
monitor and control Single Line Sets (including VMI ports).

Confirmation Events & Unsolicited Event
Ordering

Each service’s manual page contains a section describing the service’s
confirmation event and the semantics for that service’s confirmation event. In
general, when an application requests a service, MERLIN LEGEND/MERLIN
MAGIX CTI provides the confirmation event for that service before any events
flow as a result of the service invocation.7 There is one exception worth noting:

n cstaConsultationCall() - sends the confirmation event for the consultation
call service after the active call has been placed on hold and before the
consultation call is originated. Thus, the confirmation event comes after the
CSTAHeldEvent and before the CSTAServiceInitiatedEvent.

 NOTE:
Applications, especially applications that are to be switch-independent,
should never depend on a relative ordering of a service confirmation and the
resulting events. Feature interactions and differing switch architectures can
cause this to vary. Applications should use the events, rather than service
confirmations to reflect call status in a switch-independent way. This also
facilitates connection tracking when manual operations and service requests
from other applications change connection states.

The MERLIN LEGEND and MERLIN MAGIX switches treat TSAPI call control
service requests in two ways:

1. A service request may be an atomic operation that, once switch
processing begins, is processed to completion. In this case, the service
confirmation means that the service has successfully completed.

2. A service may be broken into a number of discrete call processing
operations. A confirmation for the cstaMakeCall() or
cstaConsultationCall() service does not mean that the service has
successfully completed. Events that follow the confirmation track the
progress of the service request. Refer to the service manual pages for
details.

7 This is a characteristic of MERLIN LEGEND and MERLIN MAGIX switch behavior and not a part of

the TSAPI specification.

Programming Guidelines for MERLIN LEGEND and
MERLIN MAGIX CTI Applications

Programmer’s Guide Issue 2.2 2-23

Transferring or Conferencing a Call with
Original Call Information (Consultation Call)

An application may use the cstaConsultationCall() service to extend a call to
another user in such a way that an application running on behalf of the receiving
user can use the Original Call Information (private data) to pop a screen. An
application monitoring the extension receiving the consultation call can use the
Original Call Information to pop a screen:

n as soon as the consultation call alerts,

n when the consultation call is answered, or

n to retain the Original Call Information for a later screen pop (such as when
the consultation call is transferred).

When a user transfers (or conferences) a call, the operation may be:

n supervised – the consulting party waits for the consulted party to answer.

n unsupervised – the consulting party immediately completes the operation
without waiting for the consulted party to answer.

Application designers should be aware that the availability of information about
the original call varies in manual operations. In a supervised scenario (i.e., the
consultation call is answered before completing the transfer or conference),
information about the original call is not available when the consultation call rings
(or is answered). Some information about the original call becomes available in
the CSTATransferredEvent (or CSTAConferencedEvent). In an unsupervised
scenario (i.e., the transfer or conference operation is completed before the
consultation call is answered), some information about the original call is also
available in the event, but the sequencing of that event with respect to the
delivered and established events varies. Chapter 12 contains sections showing
event flows for a variety of consultation calls and manual scenarios (supervised
and unsupervised).

 NOTE:
An application must use the cstaConsultationCall() service to conference
or transfer a call. An application cannot use a sequence of the
cstaHoldCall(), cstaMakeCall() and cstaTransferCall() (or
cstaConferenceCall()) services. In a MERLIN LEGEND or MERLIN
MAGIX switch environment, the cstaHoldCall() service does not put a call
on hold-for-conference or on hold-for-transfer.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-24 Issue 2.2 Programmer’s Guide

 NOTE:
When a user uses the telephone set to manually transfer or conference a
call to another user, an application running on behalf of the receiving user
does not receive the private data containing Original Call Information. Some
information about the original call may be available in the
CSTATransferredEvent or CSTAConferencedEvent. The information
available depends on factors such as the type of trunk the original call
arrived on. The timing of the information with respect to the delivered and
established events varies according to whether the manual operation was
supervised or unsupervised. Chapter 12 contains detailed event flows for a
variety of scenarios.

Private Data in MERLIN MAGIX Release 2.0
In MERLIN MAGIX Release 2.0, Original Call Information (OCI) is provided for
the following cases:

n When a call goes to any type of cover button, the CSTADeliveredEvent
and CSTAEstablishedEvent for the cover button will contain the
Coverage Sender in the Original calledDevice. The Original
callingDevice will contain the Internal Extension number or the ANI
number when available. The lastRedirectionDevice will contain the
Coverage sender.

n When a call goes to the forwarded-to station, the CSTADeliveredEvent
and CSTAEstablishedEvent will contain the Forward-from extension in
the Original calledDevice. The Original callingDevice will contain the
Internal Extension number or the ANI number when available. The
lastRedirectionDevice will contain the Forward-from extension.

n For calls that get picked up, the CSTAEstablishedEvent for the station
that performs the pickup will receive Original Call Information if it is
monitored and the station where the call is being picked up from is
monitored. The CSTAEstablishedEvent will contain the picked-up
extension in the Original calledDevice.

When a trunk call arrives or is answered, the CSTADeliveredEvent and
CSTAEstablishedEvent will contain the trunk id in the trunkUsed parameter in
Private Data.

When an external call is disconnected, the CSTAConnectionClearedEvent for
the station where an account code was entered will contain that information.

Private Data in MERLIN MAGIX Release 2.1 and
Later

Beginning with MERLIN MAGIX Release 2.1, Original Call Information (OCI) is no
longer provided for the following cases:

Programming Guidelines for MERLIN LEGEND and
MERLIN MAGIX CTI Applications

Programmer’s Guide Issue 2.2 2-25

n When a call goes to any type of cover button, the calledDevice parameter
in the CSTADeliveredEvent and CSTAEstablishedEvent accurately
identifies the extension number of the Coverage Sender, so it is not
necessary to provide this data in OCI.

n When a call is forwarded to another extension, the calledDevice
parameter in the CSTADeliveredEvent and CSTAEstablishedEvent
accurately identifies the extension number of the forwarding extension, so
it is not necessary to provide this data in OCI.

n For calls that get picked up, the calledDevice parameter in the
CSTAEstablishedEvent for the station that performs the pickup
accurately identifies the extension number of the picked up station, so it is
not necessary to provide this data in OCI.

Programming for Busy Conditions

The MERLIN LEGEND and MERLIN MAGIX switches contain a number of
features that ensure that processing of a call that meets a busy condition
continues in an appropriate manner. Thus, encountering a busy condition does
not imply that call processing for the call stops, or that the call has “failed.” Some
examples:

n A user transfers a call to a busy extension. The call may be queued for the
destination extension. If the call is not answered at the destination
extension, it returns to the transferring extension.

n A user transfers a call, parks a call, or camps a call onto an extension that
does not connect to the call. The MERLIN LEGEND and MERLIN MAGIX
switches will let the call remain in that state, waiting for the destination to
become available for some length of time, and then will return the call to
the extension that performed that operation on the call.

 NOTE:
The MERLIN LEGEND and MERLIN MAGIX switches do not provide the
TSAPI CSTAFailedEvent.

Since a call that is delivered to a destination generates a CSTADeliveredEvent,
an application should use the presence of a CSTADeliveredEvent to indicate
that the call is alerting at the destination. The absence of a CSTADeliveredEvent
indicates that the call has not yet alerted at a destination; however, the call may
be delivered to an extension at a future point. Users who hear a busy signal, and
do not wish to wait to see if other call processing features will deliver the call to an
alternate destination, may manually hang up the call or can use an application to
request cstaClearConnection() for the appearance of that call at their
extension.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-26 Issue 2.2 Programmer’s Guide

Trunk Events for External Connections
When a call leaves the switch on a non-PRI trunk, MERLIN LEGEND/MERLIN
MAGIX CTI also provides the CSTANetworkReachedEvent. Once the switch
provides that event, it does not provide any further events pertaining to the trunk
endpoint.

When a call leaves the switch on a PRI trunk, MERLIN MAGIX CTI also provides
the CSTANetworkReachedEvent. In addition, beginning with MERLIN MAGIX
Release 2.0, MERLIN MAGIX CTI provides the CSTADeliveredEvent and
CSTAEstablishedEvent when the call alerts and is answered—provided that the
call has been routed on digital facilities.

Feature Interactions

Applications designers must be aware that use of certain features will terminate
the MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) switch event reporting for calls. Of special note are:

n Pickup - an application monitoring an extension where a user has used the
call pickup feature will not receive events for the call (specifically a
CSTAEstablishedEvent). (Beginning with MERLIN MAGIX Release 2.0,
an application will receive events for the call).

n Forward/Follow Me - an application monitoring an extension receiving a
forwarded call will not receive events for the call. (Beginning with MERLIN
MAGIX Release 2.0, an application will receive events for a forwarded
call).

The following feature will end MERLIN LEGEND and MERLIN MAGIX switch
event reporting.

n Shared System Access - See “Shared System Access Interactions” later in
this chapter.

Applications designers may determine that specific interactions are not relevant to
the application, may design specific event handling for such interactions into the
application, or may document specific recommendations about the use (or
prohibiting the use) of specific features with an application.

Shared System Access Interactions

An understanding of MERLIN LEGEND and MERLIN MAGIX Shared System
Access (SSA) terminology and its relationship to the TSAPI model will help in
understanding the TSAPI event flows that occur when connections interact with
Shared System Access buttons.

Programming Guidelines for MERLIN LEGEND and
MERLIN MAGIX CTI Applications

Programmer’s Guide Issue 2.2 2-27

An SSA button on an extension provides an appearance of an SA button at
another extension. Using SSA buttons causes connections at the SA button to
transition into the MERLIN LEGEND/MERLIN MAGIX associative active and
associative held states. MERLIN LEGEND/MERLIN MAGIX CTI makes a
distinction between the TSAPI connected and held states and the associative
states (which TSAPI does not model).

In MERLIN LEGEND/MERLIN MAGIX CTI terminology, when a call is alerting at
an SA button and a user at another station presses an SSA button and connects
to that call, that user has answered the call. The state of the call at the SA button
changes to associative active. The state of the call at the SSA is connected (a
TSAPI state). Thus, an application monitoring an extension where an SSA
answers a call will receive further events about the call.

When a call is active at a SA button and a user at another station presses an SSA
button and connects to that call, the user bridged onto the call. The state of the
call at the SA button remains active. The state of the call at the SSA is bridged
(not a TSAPI state). Thus, an application monitoring an extension where an SSA
bridges onto a call will not receive further events about the call.

Depending on whether an SSA user answers a call or bridges onto a call, event
flows will differ for an application monitoring the extension with the SSA button.

The following rules govern event flows when SSA buttons interact with calls:

n MERLIN LEGEND/MERLIN MAGIX CTI considers connections that transition
into the associative or bridged states as having left the defined TSAPI model.
As a result, they are considered to have been cleared from the device where
this transition occurred, and any applications monitoring the device with the
SA button where this occurs will receive a CSTAConnectionClearedEvent
the first time a connection transitions into an associative state.

n Once MERLIN LEGEND/MERLIN MAGIX CTI supplies a CSTAConnection-
ClearedEvent for a connection in an associative state at a device, there will
be no further events generated for that connection at the device. The device
may reconnect to the call and MERLIN LEGEND/MERLIN MAGIX CTI will not
supply any further events. (Note that the call is still in an associative state.)

n An application monitoring an extension where an SSA answers a call will
receive events for that call (so long as the call does not enter an associative
state due to some later feature interaction).

n An application monitoring an extension where an SSA bridges onto a call will
not receive events for that call.

n Applications monitoring an extension having an SSA button do not receive
any events about an incoming call on the corresponding SA button unless a
user at the extension with the SSA button uses the SSA button to answer the
call. Of special interest is the fact that such an application will not receive a
CSTADeliveredEvent. Thus, the application cannot be aware of the call on
the corresponding SA button and the user must manually answer the call on
the SSA button.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-28 Issue 2.2 Programmer’s Guide

Coverage Button Interactions

Beginning with MERLIN MAGIX Release 2.0, an application receives
CSTADeliveredEvents, CSTAEstablishedEvents, and CSTAConnection-
ClearedEvents for calls on Cover buttons at monitored stations. Until a call is
answered it can appear (alert) at several monitored stations with Cover buttons.

n A device monitor for the coverage sender will receive events that describe
call activity for a coverage call at the coverage sender and at all coverage
receivers.

n A device monitor for a coverage receiver will only receive events that
describe call activity at the coverage sender and at the monitored
coverage receiver; it will not receive events describing call activity at other
coverage receivers.

Direct Facility Termination (DFT) and Direct
Pool Termination (DPT) Interactions

An extension may have a call appear at multiple buttons. Of special importance is
the case when a call appears at an SA button and a Direct Facility Termination
(DFT) button.

“Shared System Access Interactions” earlier in this chapter explains, in detail,
how using another button (there an SSA button) to answer or connect to a call on
an SA button will cause the call to transition to an associate state at the SA
button. The rules detailed in “Shared System Access Interactions” pertaining to
event reporting in associative and bridged states also apply to DFT interactions.
For example, the same interaction occurs when a DFT button answers or bridges
onto a call: the connection at the SA button transitions into an associative state.
Like an SSA button, a DFT button can answer or bridge onto a call (and the rules
detailed in “Shared System Access Interactions” apply).

 NOTE:
When an incoming call appears at an SA and a DFT button on a monitored
extension, a monitoring application will receive a Delivered event because
the call is ringing on an SA button. If the user presses the DFT to answer
the call, the SA button transitions to associative active, and the DFT
transitions to connected, so, using the rules detailed in “Shared System
Access Interactions,” the monitoring application will receive an Established
event.

 NOTE:
Beginning with MERLIN MAGIX Release 2.0, a monitoring application will
receive the CSTADeliveredEvent for a call that is alerting on a DFT button.
If the call is answered at another appearance of the DFT, the application will
receive a CSTAConnectionClearedEvent for the call.

MERLIN LEGEND and MERLIN MAGIX Private Data
Libraries

Programmer’s Guide Issue 2.2 2-29

Beginning with MERLIN MAGIX Release 2.0, an application receives
CSTADeliveredEvents, CSTAEstablishedEvents, and CSTAConnection-
ClearedEvents for calls on DFT and DPT buttons on monitored stations. Until a
call is answered it can appear (alert) at several monitored stations on DFT or
DPT buttons. In general, a device monitor will only receive events describing call
activity at the DFT or DPT button on the monitored station; it will not receive
events describing call activity at other DFT or DPT buttons where the call
appears.

Networking

Beginning with MERLIN LEGEND Release 6.0, the system supports the
networking of multiple switches together. The switch with the server connected
will receive all events for available devices on that switch (i.e. extensions and
queues). Once the call has left the switch, events will no longer be provided. It is
suggested that configurations that use server based CTI reporting applications
not use non-local calling groups because the events are not generated for calls
that leave the system and the application may not reflect the true state of the
calls.

Beginning with MERLIN MAGIX Release 2.0, the CSTADeliveredEvent and
CSTAEstablishedEvent are provided for outgoing network calls provided the
network consists of digital PRI trunks.

MERLIN LEGEND and MERLIN
MAGIX Private Data Libraries

Both MERLIN LEGEND CTI and MERLIN MAGIX CTI include a TSAPI Private
Data Library. The next sections below indicate what information is available in
the private data libraries.

MERLIN LEGEND Private Data Library &
Collected Digits

MERLIN LEGEND CTI includes a TSAPI Private Data Library. The private data
library supports private data version 1. The Private Data Library provides
Collected Digits in the CSTADeliveredEvent and CSTAEstablishedEvent.

MERLIN LEGEND private data is provided on the Windows 3.1, Windows 95,
Windows 98, Windows Me, Windows NT, Windows 2000, and UnixWare clients. It
is not provided on other CentreVu Computer-Telephony clients.

The MERLIN LEGEND switch provides collected digits when incoming external
call routes to a voice response unit (VMS/AA) connected to a VMI port. The voice
response unit may request a caller to input data. If the caller provides caller input
data, then that data will be present in the private data parameter for any
CSTADeliveredEvent and CSTAEstablishedEvent for the call.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-30 Issue 2.2 Programmer’s Guide

When an application uses the cstaConsultationCall service to transfer a call
with associated collected digits to another extension, the collected digits, like the
original calling number and DNIS, is present in the CSTADeliveredEvent and
CSTAEstablishedEvent for the consultation call. The cstaConsultationCall
service description (Chapter 4) and CSTADeliveredEvent and
CSTAEstablishedEvent event description sections (Chapter 8) provide further
details.

MERLIN MAGIX Private Data Library &
Collected Digits

MERLIN MAGIX CTI includes a TSAPI Private Data Library. The Private Data
library supports Private Data Versions 1-3. The Private Data Library provides
Collected Digits in the CSTADeliveredEvent, CSTAQueuedEvent and
CSTAEstablishedEvent.

MERLIN MAGIX private data is provided on the Windows 95, Windows 98,
Windows Me, Windows NT and Windows 2000 clients. It is not provided on other
CentreVu Computer-Telephony clients.

The MERLIN MAGIX switch provides collected digits when incoming external call
routes to a voice response unit (VMS/AA) connected to a VMI port. The voice
response unit may request a caller to input data. If the caller provides caller input
data, then that data will be present in the private data parameter for any
CSTADeliveredEvent, CSTAQueuedEvent and CSTAEstablishedEvent for the
call.

When an application uses the cstaConsultationCall service to transfer a call
with associated collected digits to another extension or to a Calling Group, the
collected digits, like the original calling number and DNIS, is present in the
CSTADeliveredEvent, CSTAEstablishedEvent and CSTAQueuedEvent for the
consultation call. The cstaConsultationCall service description (Chapter 4) and
CSTADeliveredEvent and CSTAEstablishedEvent event description sections
(Chapter 8) provide further details.

Collected Digit System Operation

In order for a TSAPI application to make use of collected digits, the system must
be configured for digit collection. The digit collection operates as follows:

1. The MERLIN LEGEND or MERLIN MAGIX switch directs an incoming
external call to an idle port of the VMI-DGC group. The Interactive Voice
Response (IVR) system then answers and provides the Automated Attendant
feature.

2. The customer enters a selector code at either the Main Menu or a Sub-menu
that has been administered for “Collected Digits Transfer.” The Collected
Digits Transfer is a special Automated Attendant Selector Code that is
associated with:

MERLIN LEGEND and MERLIN MAGIX Private Data
Libraries

Programmer’s Guide Issue 2.2 2-31

n an announcement

n a maximum collected digit length of up to 32 digits

n an extension number to which the call is transferred

3. The IVR system plays the associated announcement.

4. The caller enters 0 to 32 digits until one of the following occurs:

n four seconds elapses with no DTMF digit entered

n the associated maximum collected digit length is reached

n a # or * is detected

5. The IVR system then transfers the call to #58<CDIG>#<EXT> where:

n #58 indicates collected digit information transfer

n <CDIG> is the string of collected digits

n # is a delimiter

n <EXT> is the associated extension to which the call is transferred

MERLIN LEGEND and MERLIN MAGIX Private
Data Libraries and Original Call Information

Applications such as incoming customer service applications may use information
about the call (such as ANI, ICLID, DNIS, or collected digits) to pop a screen for a
customer representative when the incoming call alerts at the representative’s
desk. If that representative then transfers the call or conferences to another
representative, then it is often desirable to use the information about the original
calling party to pop a screen for the new representative. The second
representative may run an application different from the first representative, but
also use information about the original call to pop an application screen.

When an application uses the cstaConsultationCall() service to extend a call
from one user to another, the CSTADeliveredEvent, CSTAEstablishedEvent
and/or (beginning with MERLIN MAGIX Release 2.0) CSTAQueuedEvent that
result from the consultation call contain private data giving information about the
original call. An application monitoring the device receiving the consultation call
can then use information about the original call to pop a screen, or, beginning with
MERLIN MAGIX Release 2.0, to redirect the call using the cstaDeflectCall()
service. Figure 2-3 illustrates a situation where a caller’s information popped a
screen at a claims agent’s desk about a claim for a very expensive automobile.
The claims agent, wanting to retain the funds within the company while the car is
replaced, has transferred the caller to an investment specialist. The investment
specialist’s application will pop a screen (different than the claims screen) using
information about the original call.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-32 Issue 2.2 Programmer’s Guide

MERLIN LEGEND
or

MERLIN MAGIX
PBX Driver

Figure 2-3. Original Call Information Illustration

Two conditions must occur for Original Call Information to pass in events to
an application running on behalf of a user receiving a call.

1. An application must use cstaConsultationCall() to have Original Call
Information passed with a call. Manual user operations will not pass
Original Call Information in the events for a call.

2. An application must be monitoring the extension7 from which the
consultation call is being made. This is the Claims Specialist in the
figure above.

MERLIN MAGIX Private Data and Original Call
Information for Forwarded and Covered Calls

In MERLIN MAGIX Release 2.0, when a call is forwarded to another extension, an
application monitoring the forwarding destination receives a CSTADeliveredEvent; when
the call is answered, the application receives a CSTAEstablishedEvent. However,
MERLIN MAGIX Release 2.0 does not accurately populate the calledDevice parameter in
the CSTADeliveredEvent and the CSTAEstablishedEvent. If the call has been forwarded
from an SA button, an application may determine the actual called device (the forwarding

7 “Monitoring” means that the application has used cstaMonitorDevice() to request events for

that extension.

MERLIN LEGEND and MERLIN MAGIX Private Data
Libraries

Programmer’s Guide Issue 2.2 2-33

extension) by examining the Original Call Information (OCI) calledDevice parameter in
Private Data. Beginning with MERLIN MAGIX Release 2.1, the calledDevice parameter in
the CSTADeliveredEvent and CSTAEstablishedEvent accurately identifies the extension
number of the forwarding extension, so no OCI is provided in Private Data.

In MERLIN MAGIX Release 2.0, when a call alerts on a Coverage button at an extension, an
application monitoring that extension receives a CSTADeliveredEvent; when the call is
answered, the application receives a CSTAEstablishedEvent. However, MERLIN MAGIX
Release 2.0 does not accurately populate the calledDevice parameter in the CSTA-
DeliveredEvent and the CSTAEstablishedEvent. The application may determine the
actual called device (the Coverage Sender) by examining the Original Call Information (OCI)
calledDevice parameter in Private Data. Beginning with MERLIN MAGIX Release 2.1, the
calledDevice parameter in the CSTADeliveredEvent and CSTAEstablishedEvent
accurately identifies the extension number of the Coverage Sender, so no OCI is provided in
Private Data.

MERLIN MAGIX Private Data Library and
Trunk ID

Beginning with MERLIN MAGIX Release 2.0, the MERLIN MAGIX private data
library provides the Trunk ID for external (incoming or outgoing) calls as private
data in the CSTADeliveredEvent, CSTAQueuedEvent and
CSTAEstablishedEvent. The format of the trunk ID is “Txxxx”, where xxxx is the
administered number for the line (by default these are 801-880).

MERLIN MAGIX Private Data Library and
Account Codes

Beginning with MERLIN MAGIX Release 2.0, the MERLIN MAGIX private data
library provides the Account Code for external (incoming or outgoing) calls as
private data in the CSTAConnectionClearedEvent. Beginning with MERLIN
MAGIX Release 2.1, the CSTACallInfoEvent is added to also provide the
Account Code at the time the information is entered by a user.

Although Account Code information is still provided in Private Data in the
CSTAConnectionClearedEvent , an application should use the
CSTACallInfoEvent to collect Account Code information.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-34 Issue 2.2 Programmer’s Guide

Extracting Private Data from Events

Certain events carry MERLIN LEGEND or MERLIN MAGIX private data. The
following code fragment shows how an application can extract the private data.

/*
 * Code fragment to retrieve MERLIN LEGEND or MERLIN MAGIX
 * private data from a CSTA event. A pointer to the buffer
 * privateDataBuffer has been passed to acsGetEventPoll()
 * or acsGetEventBlock().
 */
#include <mlpriv.h>

MLPrivateData_t privateDataBuffer;
MLEvent_t mlEventBuffer;
RetCode_t rc;

/*
 * Did the application receive MERLIN LEGEND or MERLIN MAGIX private
 * data?
 */
if (privateDataBuffer.length != 0 &&
 strcmp(privateDataBuffer.vendor, ML_VENDOR_STRING) == 0) {
 /*
 * Received MERLIN LEGEND or MERLIN MAGIX private data.
 * Transfer the data to a MLEvent_t structure.
 */
 mlPrivateData(&privateDataBuffer, &mlEventBuffer);

 switch (mlEventBuffer.eventType) {

 case ML_CONNECTION_CLEARED:
 /*
 * Add code here to extract the private data sent
 * in a CSTAConnectionClearedEvent. Refer to the
 * Private Data Syntax section of the manual page for
 * the CSTAConnectionClearedEvent, Chapter 8.
 */
 break;

 case ML_DELIVERED:
 case MLV1_DELIVERED:
 /*
 * Add code here to extract the private data sent
 * in a CSTADeliveredEvent. Refer to the Private Data
 * Syntax section of the manual page for the
 * CSTADeliveredEvent, Chapter 8.
 */
 break;

Extracting Private Data from Events

Programmer’s Guide Issue 2.2 2-35

 case ML_ESTABLISHED:
 case MLV1_ESTABLISHED:
 /*
 * Add code here to extract the private data sent
 * in a CSTAEstablishedEvent. Refer to the Private Data
 * Syntax section of the manual page for the
 * CSTAEstablishedEvent, Chapter 8.
 */
 break;

 case ML_QUEUED:
 /*
 * Add code here to extract the private data sent
 * in a CSTAQueuedEvent. Refer to the Private Data
 * Syntax section of the manual page for the
 * CSTAQueuedEvent, Chapter 8.
 */
 break;

 case ML_GETAPI_CAPS_CONF:
 /*
 * Add code here to extract the private data sent
 * in a CSTAGetAPICapsConfEvent. Refer to the Private Data
 * Syntax section of the manual page for
 * cstaGetAPICaps(), Chapter 3.
 */
 break;

 }
 }

 NOTE:
An application must ask for private data when it opens a stream. Refer to
the acsOpenStream() manual page in Chapter 3 for details.

MERLIN LEGEND/MERLIN MAGIX TSAPI Overview

2-2 Issue 2.2 Programmer’s Guide

Control Services and Events

Contents

Programmer’s Guide Issue 2.2 3-i

Opening, Closing, and Aborting a Stream 3-2
Sending TSAPI Requests and Receiving
Confirmations 3-4

Receiving Events 3-5
TSAPI Version Control 3-6
Private Data Version Control 3-6
Migration from MERLIN LEGEND Private Data
Version 1 to MERLIN MAGIX Private Data
Version 2 or 3 3-7

Querying for Available Services 3-8
Querying Login and Password Requirements 3-8
Querying for Supported TSAPI Services and Events 3-8
Querying for Devices 3-9
Querying for Call/Call Monitor Support 3-10
n Client Library TSAPI Functions 3-10
acsAbortStream() 3-11
n Service Request Parameters 3-12
n Return Values 3-12
n Confirmation Event 3-12
n Syntax 3-12
acsCloseStream() 3-13
n Service Request Parameters 3-14
n Return Values 3-14
n Confirmation Event - ACSCloseStreamConfEvent 3-14
n Request Syntax 3-14
n Confirmation Event Syntax 3-15

Contents

3-ii Issue 2.2 Programmer’s Guide

acsOpenStream() 3-16
n Service Request Parameters 3-16
n Return Values 3-17
n Confirmation Event - ACSOpenStreamConfEvent 3-17
n Request Syntax 3-18
n Private Data Request Syntax 3-19
n Confirmation Event Syntax 3-20
ACSUniversalFailureConfEvent 3-21
n Event Parameters 3-21
n Error Values 3-21
n Syntax 3-22
ACSUniversalFailureEvent 3-23
n Event Parameters 3-23
n Error Values 3-23
n Syntax 3-24
CSTAUniversalFailureConfEvent 3-25
n Event Parameters 3-25
n Error Values 3-25
n Syntax 3-26
cstaGetAPICaps() 3-27
n Service Request Parameters 3-28
n Return Values 3-28
n Confirmation Event - CSTAGetAPICapsConfEvent 3-28
n Request Syntax 3-30
n Confirmation Event Syntax 3-31
n Private Data Confirmation Event Syntax 3-31

Control Services and Events

Programmer’s Guide Issue 2.2 3-1

Control services1 consist of TSAPI API Control Services (ACS) and certain basic
CSTA control services.

Applications use TSAPI Control Services to:

n Open a Telephony Services stream. Once an application successfully
opens a stream, the application can monitor devices, make call control
requests, and receive events on the stream.

n Select the TSAPI version for use on the stream (when opening the
stream).

n Select a private data version for use on the stream (when opening the
stream).

n Close a Telephony Services stream.

n Abort a Telephony Services stream.

n Block or poll for events on a Telephony Services stream.

n Initialize an operating system event notification facility for events arriving
on a Telephony Services stream.

n Query for a list of all available advertised services (switch driver services).

n Query for the CSTA services available on the stream.

n Query for a list of devices that the application may monitor or control.

n Query to determine if user permissions allow Call/Call monitoring on the
stream. (The MERLIN LEGEND and MERLIN MAGIX switches do not
provide Call/Call monitoring.)

Table 3-1 shows the TSAPI control services and events. The MERLIN LEGEND
and MERLIN MAGIX switches do not provide all of the optional parameters for
the control services and events.

1 These control services are described in Chapter 4 of the TSAPI specification.

Control Services and Events

3-2 Issue 2.2 Programmer’s Guide

Table 3-1. MERLIN LEGEND/MERLIN MAGIX CTI Support for TSAPI
Control Services and Events

 TSAPI Control Functions and Events
√ acsOpenStream() & ACSOpenStreamConfEvent
√ acsCloseStream()& ACSCloseStreamConfEvent
√ acsAbortStream()
√ acsGetEventBlock()
√ acsGetEventPoll()
√ acsGetFile() [where provided in client library]
√ acsSetESR() [where provided in client library]
√ acsEventNotify() [where provided in client library]
√ acsFlushEventQueue()
√ acsEnumServerNames()
√ acsQueryAuthInfo()
√ ACSUniversalFailureConfEvent
√ ACSUniversalFailureEvent
√ cstaGetAPICaps() & CSTAGetAPICapsConfEvent
√ cstaGetDeviceList() & CSTAGetDeviceListConfEvent
√ cstaQueryCallMonitor() & CSTAQueryCallMonitorConfEvent

 NOTE:
The cstaQueryCallMonitor() and cstaGetDeviceList() services indicate
whether the Telephony Services Security Database gives permissions for
the application to make certain requests on a given stream. Even though
the Telephony Services Security Database permissions may be enabled
for various services, the MERLIN LEGEND and MERLIN MAGIX switches
do not support certain services.

 NOTE:
The ACS confirmation events are a part of two unions, ACSEvent_t and
CSTAEvent_t. Typically a program will use the CSTAEvent_t union
since it spans both the CSTA and ACS events. Thus, the Syntax sections
in this chapter show CSTAEvent_t.

Opening, Closing, and Aborting a
Stream

An application must open a stream over which it may then request monitors and
control services. Opening a stream creates a logical link from the application,
through the Telephony Server and PBX driver, to the MERLIN LEGEND or
MERLIN MAGIX switch. The Telephony Server software and PBX driver
cooperate to provide stream resources and do permissions checking for
application requests.

Opening, Closing, and Aborting a Stream

Programmer’s Guide Issue 2.2 3-3

 NOTE:
Application design, in some circumstances, may require a working
knowledge of the Telephony Services Security Database. An application
that needs to monitor several phones on a stream must open the stream
giving user information for a user who has permissions in the Security
Database to monitor those devices. Refer to CentreVu Computer-
Telephony Telephony Services Administration and Maintenance for
additional information.

A PBX driver (such as the MERLIN LEGEND or MERLIN MAGIX driver) registers
one or more physical CTI links as an advertised service(s). When an application
opens a stream, it must specify the advertised service. An application may open
streams to several different advertised services.

When an application opens a stream, it receives an acsHandle that identifies that
stream for its lifetime.

An application is responsible for closing or aborting any stream that it opens. If an
application needs to quickly shut down a stream and release stream resources in
a single step, then the application should use acsAbortStream() to abort the
stream. Aborting a stream terminates any call control in progress and flushes the
event buffers for the stream. If an application needs to close a stream in a more
orderly fashion (one that provides the application with all the outstanding events
and confirmations), then the application should use acsCloseStream().

! CAUTION:
A stream remains open until the application receives the
ACSCloseStreamConfEvent on that stream. When an application uses
acsCloseStream() to close a stream, it must continue to receive events for
that stream until it receives the ACSCloseStreamConfEvent. If an
application fails to do this, the system may not immediately release all of
the stream resources.

Closing a stream does not affect the switch processing of any calls that have
been controlled or monitored on that stream.

The Telephony Services Application Programming Interface (TSAPI)
specification has step-by-step procedures in Chapter 4 for opening, closing, and
aborting a stream.

Control Services and Events

3-4 Issue 2.2 Programmer’s Guide

Sending TSAPI Requests and
Receiving Confirmations

After an application opens a stream, it may request services on that stream. In
each service request, the application passes the acsHandle for the stream.

An application supplies an invokeID with each service request. Applications may
have several service requests outstanding, so the invokeID lets the application
correlate service confirmation events with service requests. When an application
opens a stream, it specifies whether:

n the application will explicitly provide values for each invokeID. In this case,
the application provides a 32-bit value for invokeID. If a service request
returns a negative value, the function call for the request was not
successful. If the function returns zero, then the service request was
successful and the service confirmation event will contain the application-
provided invokeID.

n the TSAPI client library will generate unique values for each invokeID. In
this case, when the function returns, a negative value indicates an error
and a positive value is the invokeID value for this request. The service
confirmation event will contain the library-provided invokeID.

 NOTE:
In general, having the TSAPI library generate invokeIDs simplifies
application design. However, when service requests correspond to entries
in a data structure, it may simplify application design to use the indexes
into the data structure as the invokeIDs. Application-generated invokeIDs
might also point to Windows handles. Application-generated invokeIDs
may take on any 32-bit value.

The Telephony Services Application Programming Interface (TSAPI) specification
has step-by-step procedures in Chapter 4 for sending requests and receiving
confirmations.

Receiving Events

Programmer’s Guide Issue 2.2 3-5

Receiving Events

When an application successfully opens a stream, TSAPI queues the
ACSOpenStreamConfEvent for the application. Any additional confirmation or
call events will arrive on the same queue. To receive an event, the application
must use one of two event handling modes:

n blocking The application uses acsGetEventBlock() to block (does not
execute) until an event becomes available. Blocking is appropriate in
threaded or preemptive operating system environments.

n non-blocking The application uses acsGetEventPoll() to receive an
event (if one is queued) and then returns control to the application
regardless of whether an event is available.

! CAUTION:
Blocking may be appropriate for applications that monitor a device and
require processing only when an event occurs. However, there may be
operating system specific implications. For example, if a Windows 3.1
application blocks waiting for call events, then it cannot process events
from its Windows queue.

When an application receives an event, it may specify that the event is to be
taken from the queue belonging to a specific stream, or from a queue for any
open stream. TSAPI provides events in chronological order for the specified
streams. Thus, if the application always receives all events from all streams,
TSAPI will pass the application the events in the order of their arrival.

In some operating system environments, an application may set an Event Service
Routine (ESR) so that the operating system passes the application an
asynchronous notification when an event arrives. This mechanism does not
remove events from the event queue. The application must use
acsGetEventBlock(), acsGetEventPoll(), or acsEventNotify() to receive the
event. See the TSAPI manual page for acsSetESR() for more information.

An application may use acsFlushEventQueue() to flush events from a specified
queue or queues.

The Telephony Services Application Programming Interface (TSAPI) specification
has step-by-step procedures for receiving events in Chapter 4.

Control Services and Events

3-6 Issue 2.2 Programmer’s Guide

TSAPI Version Control

As TSAPI evolves over time, it will include more services and events. To ensure
that applications written with earlier versions of TSAPI can continue to work with
later versions, TSAPI provides version control.

When an application opens a stream, it provides a list of the TSAPI versions that
it will accept. CentreVu Telephony Services will open the stream using the latest
version that all components support. MERLIN LEGEND and MERLIN MAGIX CTI
provide TSAPI version 2.

The Telephony Services Application Programming Interface (TSAPI)
specification has step-by-step procedures in Chapter 4 for requesting TSAPI
versions and determining the version that TSAPI will supply (when a request
indicates support for multiple versions.)

Private Data Version Control

Just as TSAPI evolves over time, so do switch vendors’ private data libraries.
When an application opens a stream, it also specifies the vendor and versions of
the private data libraries that it supports.

When an application needs to obtain private data on a stream, it requests private
data from a specific vendor (and acceptable versions of that vendor’s private
data) in the acsOpenStream() request. The Request Syntax section of the
acsOpenStream() description contains a code fragment that requests MERLIN
LEGEND or MERLIN MAGIX private data. When an application receives the
ACSOpenStreamConfEvent, the private data arriving with that event gives the
vendor and version of the private data that will arrive on the stream.

The Telephony Services Application Programming Interface (TSAPI) specification
has step-by-step procedures in Chapter 4 for requesting private data vendors
and/or versions as well as determining from the response the vendor and version
that TSAPI will supply.

MERLIN LEGEND CTI provides private data version 1. MERLIN MAGIX CTI
provides private data versions 1-3.

Migration from MERLIN LEGEND Private Data Version
1 to MERLIN MAGIX Private Data Version 2 or 3

Programmer’s Guide Issue 2.2 3-7

Migration from MERLIN LEGEND
Private Data Version 1 to MERLIN
MAGIX Private Data Version 2 or 3

An existing MERLIN LEGEND CTI application that uses private data version 1 will
work in a MERLIN MAGIX environment without any changes. without any
changes, will work in a MERLIN MAGIX CTI environment. However, the
application cannot open a private data version 2 or 3 interfaces and access any
of the private data version 2 or 3 features. To migrate an existing private data
version 1 application (i.e., MERLIN LEGEND CTI) into the private data version 2
or 3 environment (i.e., MERLIN MAGIX CTI) the changes shown in Table 3-2 are
required.

n The list of Protocol Data Units (PDUs) or structure members in column one
represents the original private data version 1 code that is affected by the
private data version 2 or 3 interface.

n If you need to recompile an application written to the private data version 1
interface using the header files from the private data version 2 or 3
interface, you must change the PDUs or structure members listed in
column one in your code to the associated name listed in column two (i.e.,
The "ML" portion of the name is changed to "MLV1" for the PDUs while
“v1” is prepended in the case of structure members).

n The PDU code names or structure members listed in column three are
identical to the original private data version 1 code names; however, their
definitions are changed in the header files for the private data version 2 or
3 interface.

 NOTE:
The private data library has a convention whereby PDU names for the most
recent private data version are always "unqualified," that is, the names do
not contain any indication of a particular private data version. When a new
version of an existing PDU is introduced, the new PDU assumes the name
of the old PDU, and the name of the old PDU is changed to reflect the last
private data version for which it was valid. The same naming convention is
used when introducing a new version of an existing data type or structure
member.

Control Services and Events

3-8 Issue 2.2 Programmer’s Guide

Table 3-2. Migration of Structure Member and PDU Names from Private Data
Version 1 to Private Data Version 2 or 3

Original Private Data
Version 1 PDU or
Structure Member
Name

Required Changes to
Private Data Version 1
Names for Private Data
Version 2 or 3 Interface

New Private Data
Version 2 or 3 PDU or
Structure Member
Name

ML_DELIVERED
MLDeliveredEvent_t
deliveredEvent

MLV1_DELIVERED
MLV1DeliveredEvent_t
v1deliveredEvent

ML_DELIVERED
MLDeliveredEvent_t
deliveredEvent

ML_ESTABLISHED
MLEstablishedEvent_t
establishedEvent

MLV1_ESTABLISHED
MLV1EstablishedEvent_t
v1establishedEvent

ML_ESTABLISHED
MLEstablishedEvent_t
establishedEvent

Querying for Available Services

An application may use the acsEnumServerNames() service to obtain a list of
advertised service names. A PBX driver registers one or more physical CTI links
as an advertised service. An application may open a stream to one or more of
these advertised services.

The presence of a service name in the response indicates only that the service is
registered, not that it is operational.

An application does not have to have an open stream to call
acsEnumServerNames().

Querying Login and Password
Requirements

An application that needs to operate with multiple server operating systems may
use the acsQueryAuthInfo() service to determine the structure of the login and
password information that it must supply to open a stream to a given advertised
service.

Querying for Supported TSAPI
Services and Events

An application may use the cstaGetAPICaps() service to determine the CSTA
services and events that a given stream provides. The CSTAGetAPICapsConf-
Event service contains an entry for each CSTA service and event.

Querying for Devices

Programmer’s Guide Issue 2.2 3-9

Querying for Devices

An application may use the cstaGetDeviceList() service to obtain a list of
devices that the Telephony Services Security Database permits it to control,
monitor, query, or route on a given stream.

 NOTE:
No devices will be returned if the Telephony Services is installed without the
optional Telephony Services Database. If an application relies upon the
cstaGetDeviceList() service to obtain a list of devices, then the application
vendor should indicate in their documentation that installation of the Telephony
Services Database is required.

 NOTE:
Although an application may be given permissions for various operations on
various devices in the Telephony Services Security Database, MERLIN LEGEND
and MERLIN MAGIX switches do not support any TSAPI routing, call/call
monitoring or call/device monitoring services.

Control Services and Events

3-10 Issue 2.2 Programmer’s Guide

Querying for Call/Call Monitor
Support

An application may use the cstaQueryCallMonitor() service to determine if the
Telephony Services Security Database permits it to do call/call monitoring on a
given stream.

 NOTE:
Although an application may be given permissions for call/call monitoring in
the Telephony Services Security Database, the MERLIN LEGEND and
MERLIN MAGIX switches do not support TSAPI call/call monitoring.

Client Library TSAPI Functions

The TSAPI client libraries provide the TSAPI functions and events shown in Table
3-3 to applications in all switch environments, including the MERLIN LEGEND or
MERLIN MAGIX switch. Refer to the Telephony Services Application
Programming Interface (TSAPI) for further details. Since these functions are
documented in the Telephony Services Application Programming Interface
(TSAPI), they are not described in this guide.

Table 3-3. Client Library TSAPI Functions and Confirmation Events

 Client Library TSAPI Functions and Confirmation Events
√ acsGetEventBlock()
√ acsGetEventPoll()
√ acsGetFile()
√ acsSetESR()
√ acsEventNotify()
√ acsFlushEventQueue
√ acsEnumServerNames
√ acsQueryAuthInfo()
√ cstaGetDeviceList() & CSTAGetDeviceListConfEvent
√ cstaQueryCallMonitor() & CSTAQueryCallMonitorConfEvent

acsAbortStream()

Programmer’s Guide Issue 2.2 3-11

acsAbortStream()

The abort stream service terminates any CTI services in progress on a specified
stream, shuts down the stream, and frees all stream resources in a single
operation.

The MERLIN LEGEND PBX driver or MERLIN MAGIX PBX driver terminates all
CTI operations in progress on acsHandle. When the acsAbortStream function
call returns, the stream is aborted. The application does not receive a
confirmation event. Once a stream is aborted, the application will not receive:

n confirmation events for outstanding requests on the stream

n call events for monitors that were in progress on the stream

Aborting a stream has no effect on call processing (or on call processing requests
that have already been made). Thus, the MERLIN LEGEND or MERLIN MAGIX
switch will not take any special action on any call control requests that may be
outstanding on the aborted stream. The MERLIN LEGEND or MERLIN MAGIX
switch will process any pending requests from an aborted stream in the normal
way.

If aborting the stream terminates any device monitors, the application receives a
CSTAMonitorEndedEvent for those device monitors.

Control Services and Events

3-12 Issue 2.2 Programmer’s Guide

Service Request Parameters

Table 3-4. acsAbortStream() Request Parameters

acsHandle handle of the ACS stream to be aborted

privateData NULL, not used in this service request

Return Values

Table 3-5. acsAbortStream() Return Values

zero Success
ACSERR_BADHDL acsHandle is not a valid stream identifier

Confirmation Event

There is no confirmation event for the abort service. When the function call
returns, Telephony Services has aborted the stream and released all the stream
resources.

Syntax

acsAbortStream (ACSHandle_t acsHandle, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

acsCloseStream()

Programmer’s Guide Issue 2.2 3-13

acsCloseStream()

acsCloseStream() closes a Telephony Services stream.

The MERLIN LEGEND PBX driver or MERLIN MAGIX PBX driver will close the
stream and send an ACSCloseStreamConfEvent to the application. Once an
application receives an ACSCloseStreamConfEvent for a stream, it will not
receive:

n a confirmation event for any outstanding service requests on that stream

n any further call events for monitors that were in progress on that stream

Thus, the last event that the closing application receives on the stream is the
confirmation of the stream close request, ACSCloseStreamConfEvent. Since a
stream close has no effect on call processing (or on call processing requests that
have already been made), the MERLIN LEGEND or MERLIN MAGIX switch will
not take any special action relating to any call control requests that may be
outstanding on the closed stream. The MERLIN LEGEND or MERLIN MAGIX
switch will process and respond to any such outstanding requests in the normal
way.

! CAUTION:
A stream remains open until the application receives the
ACSCloseStreamConfEvent on that stream. When an application uses
acsCloseStream() to close a stream, it must continue to receive events for
that stream until it receives the ACSCloseStreamConfEvent. If an
application fails to do this, the system may not immediately release all of
the stream resources.

If closing the stream terminates any device monitors, the application receives a
CSTAMonitorEndedEvent for those device monitors.

Control Services and Events

3-14 Issue 2.2 Programmer’s Guide

Service Request Parameters

Table 3-6. acsCloseStream() Request Parameters

acsHandle handle of the ACS stream to be closed

invokeID identifies this request within the stream
privateData NULL, not used in this service request

Return Values

Table 3-7. acsCloseStream() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle not a valid stream identifier

Confirmation Event -
ACSCloseStreamConfEvent

Table 3-8. ACSCloseStreamConfEvent Parameters

acsHandle handle for ACS stream that was closed

eventClass ACSCONFIRMATION

eventType ACS_CLOSE_STREAM_CONF
invokeID from acsCloseStream() service request

Request Syntax

acsCloseStream (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

acsCloseStream()

Programmer’s Guide Issue 2.2 3-15

Confirmation Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 ACSConfirmationEvent acsConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union {
 ACSCloseStreamConfEvent_t acsclose;
 } u;
} ACSConfirmationEvent;

typedef struct ACSCloseStreamConfEvent_t {
 Nulltype null;
} ACSCloseStreamConfEvent_t;

Control Services and Events

3-16 Issue 2.2 Programmer’s Guide

acsOpenStream()

acsOpenStream() opens a Telephony Services stream to the advertised service
serverID.

acsOpenStream() initializes all stream data structures necessary for the client to
use MERLIN LEGEND or MERLIN MAGIX CTI services. All existing TSAPI
stream guidelines apply.

MERLIN LEGEND and MERLIN MAGIX CTI support TSAPI version 2 only.

The acsOpenStream() function call returns the stream handle in acsHandle.

Service Request Parameters

Table 3-9. acsOpenStream() Request Parameters

acsHandle return parameter - When a stream is successfully
opened, this parameter contains the handle of the ACS
stream.

invokeIDType specifies whether the application supplies invokeID
values or the TSAPI library generates invokeID values.

invokeID identifies this request within the stream.
streamType ST_CSTA
serverID advertised CTI link service
loginID user’s login ID
passwd user’s password
applicationName application name (for reporting and tracking). May be

null.

acsLevelReq not used

apiVer "TS2" (string indicating TSAPI version 2)

sendQSize library queues this number of application-to-switch
service requests. 0 indicates default library size.

sendExtraBufs Number of additional buffers TSAPI allocates for the send
queue.

recvQSize library queues this number of switch-to-application events
and confirmations. 0 indicates default library size.

recvExtraBufs Number of additional buffers TSAPI allocates for the
receive queue.

acsOpenStream()

Programmer’s Guide Issue 2.2 3-17

privateData If an application does not desire private data on the
stream, set to NULL. To receive MERLIN LEGEND or
MERLIN MAGIX private data, set the vendor field in the
privateData structure to the null terminated string
"VERSION". Set the data field to contain the one-byte
manifest constant PRIVATE_DATA_ENCODING. Use the
private library function mlMakeVersionString() as
shown in Private Data Request Syntax that follows to set
the private data version.

Return Values

Table 3-10. acsOpenStream() Return Values

zero or positive value Stream opened. The parameter acsHandle
contains the handle for ACS stream.

ACSERR_APIVERDENIED apiVer not supported
ACSERR_BADPARAMETER One or more of the parameters is invalid
ACSERR_NODRIVER No TSAPI client library found or installed
ACSERR_NOSERVER serverID not available
ACSERR_NORESOURCE Insufficient resources to open ACS stream

Confirmation Event -
ACSOpenStreamConfEvent

The private data that arrives with the ACSOpenStreamConfEvent indicates the
vendor and version of the private data for the opened stream. If private data will
arrive on a stream, the data field in the PrivateData_t structure will contain
the one-byte discriminator PRIVATE_DATA_ENCODING followed by an ASCII
string giving the vendor and version of the private data. When the stream supplies
MERLIN LEGEND or MERLIN MAGIX private data, this string matches the
ML_VENDOR_STRING constant in the header file <mlpriv.h>.

Control Services and Events

3-18 Issue 2.2 Programmer’s Guide

Table 3-11. ACSOpenStreamConfEvent Parameters

acsHandle handle for ACS stream that was aborted

eventClass ACSCONFIRMATION

eventType ACS_OPEN_STREAM_CONF
invokeID from acsOpenStream() service request

apiVer TSAPI version in use. The MERLIN LEGEND PBX
driver and MERLIN MAGIX PBX driver provide only
TSAPI version 2. This parameter contains "ST2".

libVer client library version in use

tsrvVer Tserver version in use

drvrVer MERLIN LEGEND PBX driver or MERLIN MAGIX
PBX driver version in use

Request Syntax

acsOpenStream (ACSHandle_t *acsHandle, /* RETURN */
 InvokeIDType_t invokeIDType, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 StreamType_t streamType, /* INPUT */
 ServerID_t *serverID, /* INPUT */
 LoginID_t *loginID, /* INPUT */
 Passwd_t *passwd, /* INPUT */
 AppName_t *applicationName, /* INPUT */
 Level_t acsLevelReq, /* INPUT */
 Version_t *apiVer, /* INPUT */
 unsigned short sendQSize, /* INPUT */
 unsigned short sendExtraBufs, /* INPUT */
 unsigned short recvQSize, /* INPUT */
 unsigned short recvExtraBufs, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

acsOpenStream()

Programmer’s Guide Issue 2.2 3-19

Private Data Request Syntax

mlMakeVersionString(char *requestedVersion, /* INPUT */
 char *supportedVersion); /* RETURN */

/*
 * EXAMPLE - Code fragment to request MERLIN LEGEND private data
 * version 1 or MERLIN MAGIX private data version 2 or 3.
 */
#include <mlpriv.h>

MLPrivateData_t privateData;
RetCode_t rc;

/* Prepare private data buffer for version request */
(void)strcpy(privateData.vendor, "VERSION");
privateData.data[0] = PRIVATE_DATA_ENCODING;

/* Use private library function to prepare a version string
 * for either MERLIN LEGEND private data version 1 or MERLIN
 * MAGIX private data version 2 or 3
 */
if ((rc = mlMakeVersionString("1-3", &(privateData[1]))) > 0)
{
 /*
 * Al least one of the requested private data versions is
 * supported by the client private data library.
 */
 privateData.length = rc + 2;
}
else
{
 /*
 * None of the requested private data version are supported
 * by the client private data library.
 */
 privateData.length = 0;
 }

Control Services and Events

3-20 Issue 2.2 Programmer’s Guide

Confirmation Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 ACSConfirmationEvent acsConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union {
 ACSOpenStreamConfEvent_t acsopen;
 } u;
} ACSConfirmationEvent;

typedef struct ACSOpenStreamConfEvent_t {
 Version_t apiVer;
 Version_t libVer;
 Version_t tsrvVer;
 Version_t drvrVer;
} ACSOpenStreamConfEvent_t;

ACSUniversalFailureConfEvent

Programmer’s Guide Issue 2.2 3-21

ACSUniversalFailureConfEvent

The ACSUniversalFailureConfEvent can occur in place of a confirmation event
for both the ACS and CSTA services. It indicates that an ACS problem occurred
while processing the service request. It does not necessarily indicate a failure or
loss of the ACS Stream. If the ACS Stream has failed, then the application will
receive the ACSUniversalFailureEvent.

Event Parameters

Table 3-12. ACSUniversalFailureConfEvent Parameters

acsHandle ACS stream on which failure occurred

eventClass ACSCONFIRMATION

eventType ACS_UNIVERSAL_FAILURE_CONF

error TSAPI error value

Error Values

Refer to the TSAPI specification for possible error values.

Control Services and Events

3-22 Issue 2.2 Programmer’s Guide

Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 ACSConfirmationEvent acsConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union {
 ACSUniversalFailureConfEvent_t failureEvent;
 } u;
} ACSConfirmationEvent;

typedef struct ACSUniversalFailureConfEvent_t {
 ACSUniversalFailure_t error;
} ACSUniversalFailureEvent_t;

ACSUniversalFailureEvent

Programmer’s Guide Issue 2.2 3-23

ACSUniversalFailureEvent

Telephony Services sends this event when an asynchronous non-CSTA error
condition occurs. An application must be able to handle this event on any stream
at any time.

If the error condition requires the driver to tear down the ACS stream (certain of
these errors do; others do not), then the MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver will tear down the stream as described in the
acsAbortStream() section. If the failure is one that causes the driver to close the
stream, then the application will receive the error
DRIVER_ACSHANDLE_TERMINATION and an application should take action to
clean up its data structures and release any identifiers for this stream.

This event may indicate a loss of the CTI link to the MERLIN LEGEND or
MERLIN MAGIX switch.

Event Parameters

Table 3-13. ACSUniversalFailureEvent Parameters

acsHandle ACS stream on which failure occurred

eventClass ACSUNSOLICITED

eventType ACS_UNIVERSAL_FAILURE

error ACS error value

Error Values

Refer to the Telephony Services Application Programming Interface (TSAPI)
specification for possible error values.

Control Services and Events

3-24 Issue 2.2 Programmer’s Guide

Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 ACSUnsolicitedEvent acsUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 union {
 ACSUniversalFailureEvent_t failureEvent;
 } u;
} ACSUnsolicitedEvent;

typedef struct ACSUniversalFailureEvent_t {
 ACSUniversalFailure_t error;
} ACSUniversalFailureEvent_t;

CSTAUniversalFailureConfEvent

Programmer’s Guide Issue 2.2 3-25

CSTAUniversalFailureConfEvent

If an application has made a service request that has failed, the application
receives the CSTAUniversalFailureConfEvent in place of a confirmation event
for the service request. The CSTAUniversalFailureConfEvent contains an error
value that gives the reason for the failure. Since the
CSTAUniversalFailureConfEvent may be sent in many contexts, the meaning
of the error value may vary. Each service’s manual page lists the error values
that it might return and the meaning for the value in the context of that service.

This event does not indicate a loss of the CTI link to the MERLIN LEGEND or
MERLIN MAGIX switch.

Event Parameters

Table 3-14. CSTAUniversalFailureConfEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTACONFIRMATION

eventType CSTA_UNIVERSAL_FAILURE_CONF

invokeID contains the value of the invokeID parameter that
the application supplied in the service request that
has failed. This associates the failure with a
service request on the stream.

error contains a value shown on the manual page for the
service that failed.

Error Values

The error parameter contains a value indicating why the corresponding service
request has failed. The pages describing service requests list the possible values
of the error parameter and their meanings in the context of that service.

Control Services and Events

3-26 Issue 2.2 Programmer’s Guide

Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union {
 CSTAUniversalFailureConfEvent_t universalFailure;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAUniversalFailureConfEvent_t {
 CSTAUniversalFailure_t error;
} CSTAUniversalFailureConfEvent_t;

cstaGetAPICaps()

Programmer’s Guide Issue 2.2 3-27

cstaGetAPICaps()

Applications use the cstaGetAPICaps() query to obtain environment information.
The resulting CSTAGetAPICapsConfEvent lists the supported TSAPI services
and events. Private data in the confirmation indicates the MERLIN LEGEND or
MERLIN MAGIX switch release, as indicated in Table 3-15.

Table 3-15. CSTAGetAPICapsConfEvent Private Data

MERLIN LEGEND Release 5.0 5.0

MERLIN LEGEND Release 5.1 5.1

MERLIN LEGEND Release 6.0 6.0

MERLIN LEGEND Release 6.1 6.1

MERLIN LEGEND Release 7.0 7.0

MERLIN MAGIX Release 1.0 MAGIX 1.0

MERLIN MAGIX Release 1.5 MAGIX 1.5

MERLIN MAGIX Release 2.0 MAGIX 2.0

MERLIN MAGIX Release 2.1 MAGIX 2.1

MERLIN MAGIX Release 2.2 MAGIX 2.2

Unrecognized Switch Release Version Unknown

 NOTE:
If a stream is opened to an MLPD on NetWare, the private data string in
the confirmation event contains the string “ML50” regardless of the switch
version.

 NOTE:
The CSTAGetAPICapsConfEvent does not distinguish between providing
events for local monitored stations and trunk connections. The
CSTAGetAPICapsConfEvent indicates that the MERLIN LEGEND or
MERLIN MAGIX switch provides certain events. Programmers must
understand the limitation in the CSTAGetAPICapsConfEvent and not
program applications to expect events for far-end parties on trunk calls.

Control Services and Events

3-28 Issue 2.2 Programmer’s Guide

Service Request Parameters

Table 3-16. cstaGetAPICaps() Request Parameters

acsHandle handle of ACS stream for this service request

invokeID identifies this service request within the stream

Return Values

Table 3-17. cstaGetAPICaps() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle not a valid stream identifier

Confirmation Event -
CSTAGetAPICapsConfEvent

For MELRIN LEGEND (Release 5.0 and later) and MERLIN MAGIX Release 1.0,
the CSTAGetAPICapsConfEvent returns positive values for the following
getAPIcaps structure elements:

n answerCall
n clearConnection
n conferenceCall
n conferencedEvent
n connectionClearedEvent
n consultationCall
n deliveredEvent
n establishedEvent
n heldEvent
n holdCall
n makeCall
n monitorDevice
n monitorEnded
n monitorStop
n networkReachedEvent
n retrieveCall
n retrievedEvent
n serviceInitiatedEvent
n transferCall
n transferredEvent.

cstaGetAPICaps()

Programmer’s Guide Issue 2.2 3-29

The driver returns zero values (not supported) for all other elements.
For MERLIN MAGIX Release 1.5, the CSTAGetAPICapsConfEvent returns positive values
for the same getAPIcaps structure elements as MERLIN MAGIX Release 1.0, plus the
following:

n divertedEvent
n loggedOffEvent
n loggedOnEvent
n queuedEvent
n setAgentState
n workNotReadyEvent.

The driver returns zero values (not supported) for all other elements.

For MERLIN MAGIX Release 2.0, the CSTAGetAPICapsConfEvent returns
positive values for the same getAPIcaps structure elements as MERLIN
MAGIX Release 1.5, plus the following:

n deflectCall
n doNotDisturbEvent
n escapeService
n notReadyEvent
n privateEvent
n queryAgentState
n readyEvent.

The driver returns zero values (not supported) for all other elements.

For MERLIN MAGIX Release 2.1 and later, the CSTAGetAPICapsConfEvent
returns positive values for the same getAPIcaps structure elements as
MERLIN MAGIX Release 2.0, plus the following:

n callInformationEvent
n queryDnd
n queryMwi
n readyEvent
n setDnd
n setMwi
n snapshotDeviceReq
n workReadyEvent.

The driver returns zero values (not supported) for all other elements.

Control Services and Events

3-30 Issue 2.2 Programmer’s Guide

Table 3-18. CSTAGetAPICapsConfEvent Parameters

acsHandle handle for ACS stream from service request

eventClass CSTACONFIRMATION

eventType CSTA_GETAPI_CAPS_CONF
getAPICaps structure with element for each service and event

Request Syntax

cstaGetAPICaps (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID); /* INPUT */

cstaGetAPICaps()

Programmer’s Guide Issue 2.2 3-31

Confirmation Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union {
 CSTAGetAPICapsConfEvent_t getAPICaps;
 } u;
} CSTAConfirmationEvent;

Private Data Confirmation Event Syntax

typedef struct
{
 MLEventType eventType; // ML_GETAPI_CAPS_CONF
 union {
 MLGetAPICapsConfEvent_t getAPICaps;
 } u;
} MLEvent_t;

typedef struct MLGetAPICapsConfEvent_t {
 char switchVersion[16]; // specifies switch version
} MLGetAPICapsConfEvent_t;

Control Services and Events

3-32 Issue 2.2 Programmer’s Guide

Call Control Services

Contents

Programmer’s Guide Issue 2.2 4-i

Sending Call Control Requests and Receiving
Confirmations 4-3

Call Control Request Failures 4-3
Call Control Service Page Format 4-4
cstaAnswerCall() 4-6
n Service Request Parameters 4-7
n Scenario Diagram 4-7
n Return Values 4-7
n Confirmation Event - CSTAAnswerCallConfEvent 4-8
n CSTA Universal Failure Confirmation Event Errors 4-8
n Request Syntax 4-10
n Confirmation Event Syntax 4-10
n Important Feature Interactions 4-10

Barge-In 4-11
Bridged Appearances (SSA and DFT buttons) 4-11
Call Pickup 4-11
Callback Queuing (CBQ) 4-11
Camp On Return 4-11
Coverage 4-11
Direct Inward Dial (DID) 4-12
Do Not Disturb (DND) 4-12
DGC 4-12
Forward On Busy 4-12
Forward/Follow Me 4-12
MLX and 4400-series Headset 4-13
Multiple Call Appearances 4-13
Night Service 4-13
Park Return 4-13
Pools (DPT buttons) 4-13
Reminder 4-13

Contents

Programmer’s Guide Issue 2.2 4-ii

Remote Access 4-13
Ringing Line Preference (RLP) 4-14
Service Observing 4-14
Single Line Sets 4-14
System Access Originate Only 4-14
System Access Ring/Voice 4-14
System Access Voice Announce 4-14
Transfer Return 4-14

cstaClearConnection() 4-15
n Service Request Parameters 4-15
n Scenario Diagram 4-15
n Return Values 4-17
n Confirmation Event CSTAClearConnectionConfEvent 4-17
n CSTA Universal Failure Confirmation Event Error Values 4-17
n Request Syntax 4-19
n Confirmation Event Syntax 4-19
n Important Feature Interactions 4-20

Bridging (SSA and DFT buttons) 4-20
Call Screening 4-20
Coverage 4-20
Direct Facility/Pool Termination (DFT/DPT) 4-20
Paging 4-20
Service Observing 4-21
Single Line Sets 4-21

cstaConferenceCall() 4-22
n Service Request Parameters 4-23
n Scenario Diagram 4-23
n Return Values 4-24
n Confirmation Event - CSTAConferenceCallConfEvent 4-24
n CSTA Universal Failure Event Error Values 4-25
n Request Syntax 4-27
n Confirmation Event Syntax 4-27
n Important Feature Interactions 4-28

Auto Answer All - AAA (ATL Only) – MERLIN LEGEND
and MERLIN MAGIX 1.0 only 4-28

Auto Answer Intercom - AAI (ATL Only) - MERLIN
LEGEND and MERLIN MAGIX 1.0 only 4-28

Call Screening 4-28
Call Waiting 4-28
Conferencing 4-29
Callback Queuing (CBQ) 4-29
Coverage 4-29

Contents

Programmer’s Guide Issue 2.2 4-iii

Direct Facility Termination/Personal Lines 4-29
Group Calling (DGC) 4-30
Networking 4-30
Pools 4-30
Senderized Operation 4-30
Service Observing 4-30
Single Line Sets 4-31
System Access (SA)/Shared System Access (SSA)
Buttons 4-31

Voice Announce 4-31
cstaConsultationCall() 4-32
n Service Request Parameters 4-33
n Scenario Diagram 4-34
n Return Values 4-34
n Confirmation Event - CSTAConsultationCallConfEvent 4-35
n CSTA Universal Failure Event Error Values 4-35
n Request Syntax 4-37
n Confirmation Event Syntax 4-38
n Important Feature Interactions 4-38

Account Code/Forced Account Code 4-38
Authorization Code 4-38
Automatic Line Selection and Ringing Line Preference 4-39
Automatic Route Selection (ARS) 4-39
Central Office Trunks 4-39
Call Screening 4-39
Call Waiting 4-39
Callback Queuing (CBQ) 4-39
Conferencing 4-40
Coverage 4-40
Dial Plan 4-40
Direct Facility/Pool Termination 4-40
Direct Voice Mail 4-41
Do Not Disturb 4-41
End-Of-Dialing (Loop and Ground Start Trunks) 4-41
External Numbers 4-41
Far End Disconnect 4-41
Group Calling (DGC) 4-41
Hold 4-42
Idle Time-outs 4-42
Listed Directory Number (LDN) 4-42
Modem Pool 4-42
Networking 4-42

Contents

Programmer’s Guide Issue 2.2 4-iv

One-Touch Transfer with Manual Completion 4-43
Paging 4-43
Park 4-43
Pool Codes 4-43
Redial 4-43
Remote Call Forwarding 4-43
Restrictions 4-43
Save Number Dialed 4-44
Senderization 4-44
Service Observing 4-44
Shared System Access Buttons 4-44
Single Line Sets 4-44
System Access Ring/Voice Option 4-44
Transfer 4-44
Voice Announce 4-45

cstaDeflectCall() 4-46
n Service Request Parameters 4-48
n Scenario Diagram 4-48
n Return Values 4-49
n Confirmation Event - CSTADeflectCallConfEvent 4-49
n CSTA Universal Failure Event Error Values 4-49
n Request Syntax 4-51
n Confirmation Event Syntax 4-51
n Important Feature Interactions 4-51

Bridging 4-51
Callback Queuing (CBQ) 4-51
Calling Information 4-52
Camp-On Return 4-52
Coverage 4-52
Delay Announcement Unit 4-52
Dial Plan Routing 4-52
Distinctive Ring 4-52
Group Calling 4-52
Listed Directory Number (LDN) 4-52
Park Return 4-52
Reminder Service 4-53
Transfer Return 4-53

cstaHoldCall() 4-54
n Service Request Parameters 4-55
n Scenario Diagram 4-55
n Return Values 4-56
n Confirmation Event - CSTAHoldCallConfEvent 4-56

Contents

Programmer’s Guide Issue 2.2 4-v

n CSTA Universal Failure Event Error Values 4-56
n Request Syntax 4-58
n Confirmation Event Syntax 4-59
n Important Feature Interactions 4-59

4400D Hold 4-59
Call Screening 4-59
Conference 4-59
Coverage 4-60
Direct Facility Termination and Direct Pool Termination
(DFT/DPT) 4-60

End-Of-Dialing (Loop and Ground Start Trunks) 4-60
Intercom - Voice Announce 4-60
Service Observing 4-60
Shared System Access Buttons 4-61
Single Line Set 4-61
Transfer 4-61

cstaMakeCall() 4-62
n Service Request Parameters 4-63
n Scenario Diagram 4-63
n Return Values 4-64
n Confirmation Event - CSTAMakeCallConfEvent 4-64
n CSTA Universal Failure Event Error Values 4-65
n Request Syntax 4-66
n Confirmation Event Syntax 4-67
n Important Feature Interactions 4-67

Auto Dial 4-67
Automatic Line Selection (ALS) 4-67
Bridged Appearances 4-67
Group Page 4-67
Redial 4-68
Restrictions 4-68
Save Number Dial 4-68
Service Observing 4-68

cstaRetrieveCall() 4-69
n Service Request Parameters 4-69
n Scenario Diagram 4-69
n Return Values 4-70
n Confirmation Event - CSTARetrieveCallConfEvent 4-70
n CSTA Universal Failure Event Error Values 4-70
n Request Syntax 4-72
n Confirmation Event Syntax 4-72
n Important Feature Interactions 4-73

Contents

Programmer’s Guide Issue 2.2 4-vi

Call Screening 4-73
Callback Queuing (CBQ) 4-73
Conference 4-73
Coverage 4-73
Direct Facility Termination and Direct Pool Termination
(DFT/DPT) 4-73

Service Observing 4-73
Shared System Access Buttons 4-74
Single Line Set 4-74
Transfer 4-74

cstaTransferCall() 4-75
n Service Request Parameters 4-76
n Scenario Diagram 4-77
n Return Values 4-77
n Confirmation Event - CSTATransferCallConfEvent 4-77
n CSTA Universal Failure Event Error Values 4-78
n Request Syntax 4-80
n Confirmation Event Syntax 4-81
n Important Feature Interactions 4-81

Auto Answer All - AAA (ATL Only – MERLIN LEGEND
and MERLIN MAGIX 1.0) 4-81

Auto Answer Intercom - AAI (ATL Only – MERLIN
LEGEND and MERLIN MAGIX 1.0) 4-81

Bridged Appearances (SSA) 4-81
Call Screening 4-82
Call Waiting 4-82
Callback Queuing (CBQ) 4-82
Conference 4-82
Coverage 4-82
Direct Facility Termination/Personal Lines 4-82
Group Calling (DGC) 4-82
Forward/Follow Me 4-83
Hands Free Answer on Intercom (HFAI) 4-83
Networking 4-83
Park 4-83
Senderized Operation 4-83
Service Observing 4-83
System Access (SA)/Shared System Access (SSA)
Buttons 4-83

Transfer 4-84
Voice Announce 4-84

Call Control Services

Programmer’s Guide Issue 2.2 4-1

Applications use Call Control Services to control calls at extensions. MERLIN
LEGEND and MERLIN MAGIX CTI Call Control services allow an application to:

n Make a call.

n Answer an alerting connection at an extension.

n Place a connection on hold.

n Retrieve a held, held-for-transfer, or held-for-conference connection.

n Clear a connection at an extension (e.g., drop the call from that extension).

n Place a connection on hold-for-transfer and make a consultation call to
another party. Information about the original caller (the call on hold) passes
in private data to any application monitoring the consultation party’s
extension. Once an application makes the consultation call, it may
conference or transfer the original call with the consultation call.

n Transfer a connection on-hold-for-transfer with an active connection at an
extension.

n Conference a connection on-hold-for-conference or on-hold-for-transfer
with an active connection at an extension.

Beginning with MERLIN MAGIX Release 2.0, Call Control services also allow an
application to deflect an unanswered Calling Group Call to a Calling Group Queue
or Agent.

Beginning with MERLIN MAGIX Release 2.1, Call Control services allow an
application to deflect an unanswered Call Group Call to any available extension.

Tables 4-1 and 4-2 show the TSAPI Call Control Services and confirmation
events that the MERLIN LEGEND and MERLIN MAGIX switches provide. Note
that the MERLIN LEGEND and MERLIN MAGIX switches do not provide all of the
TSAPI Call Control Services.

Call Control Services

4-2 Issue 2.2 Programmer’s Guide

Table 4-1. MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) CTI Support for TSAPI Call Control
Services

 TSAPI Call Control Service
 cstaAlternateCall() & CSTAAlternateCallConfEvent

√ cstaAnswerCall() & CSTAAnswerCallConfEvent
 cstaCallCompletion() & CSTACallCompletionConfEvent
 cstaClearCall() & CSTAClearCallConfEvent

√ cstaClearConnection() & CSTAClearConnectionConfEvent
√ cstaConferenceCall() & CSTAConferenceCallConfEvent
√ cstaConsultationCall() & CSTAConsultationCallConfEvent
 cstaDeflectCall() & CSTADeflectCallConfEvent
 cstaGroupPickupCall() & CSTAGroupPickupCallConfEvent

√ cstaHoldCall() & CSTAHoldCallConfEvent
√ cstaMakeCall() & CSTAMakeCallConfEvent
 cstaMakePredictiveCall() & CSTAMakePredictiveCallConfEvent
 cstaPickupCall() & CSTAPickupCallConfEvent
 cstaReconnectCall() & CSTAReconnectCallConfEvent

√ cstaRetrieveCall() & CSTARetrieveCallConfEvent
√ cstaTransferCall() & CSTATransferCallConfEvent

Table 4-2. MERLIN MAGIX Release 2.0 and later CTI Support for TSAPI Call
Control Services

 TSAPI Call Control Service
 cstaAlternateCall() & CSTAAlternateCallConfEvent

√ cstaAnswerCall() & CSTAAnswerCallConfEvent
 cstaCallCompletion() & CSTACallCompletionConfEvent
 cstaClearCall() & CSTAClearCallConfEvent

√ cstaClearConnection() & CSTAClearConnectionConfEvent
√ cstaConferenceCall() & CSTAConferenceCallConfEvent
√ cstaConsultationCall() & CSTAConsultationCallConfEvent
√ cstaDeflectCall() & CSTADeflectCallConfEvent
 cstaGroupPickupCall() & CSTAGroupPickupCallConfEvent

√ cstaHoldCall() & CSTAHoldCallConfEvent
√ cstaMakeCall() & CSTAMakeCallConfEvent
 cstaMakePredictiveCall() & CSTAMakePredictiveCallConfEvent
 cstaPickupCall() & CSTAPickupCallConfEvent
 cstaReconnectCall() & CSTAReconnectCallConfEvent

√ cstaRetrieveCall() & CSTARetrieveCallConfEvent
√ cstaTransferCall() & CSTATransferCallConfEvent

Sending Call Control Requests and Receiving
Confirmations

Programmer’s Guide Issue 2.2 4-3

! CAUTION:
When designing an application, be aware that the MERLIN LEGEND
and MERLIN MAGIX switches do not support all of the optional TSAPI
call control parameters. The pages describing each call control
service show all of the TSAPI parameters and indicate those that the
MERLIN LEGEND and MERLIN MAGIX switches support.

Sending Call Control Requests and
Receiving Confirmations

Each Call Control request has an associated confirmation event. This book
presents information about each service’s confirmation event under the heading
for the service.

An application must receive the confirmation event on the stream where it sent
the Call Control request. “Receiving Events” in Chapter 3 describes how
applications receive confirmation events.

Confirmations have different meanings for various services. Refer to the manual
page for each service when coding applications so as to use the service
confirmations properly. In some cases, an application must wait for the
corresponding Call Event to ensure that the request was carried out. In general, it
is recommended that an application monitor the device it is controlling so that it
receives Call Events reflecting the call activity at those devices. Chapter 6
describes the Monitoring Services.

Call Control Request Failures

If the service request fails for some reason, the application will receive a
CSTAUniversalFailureConfEvent in place of the service confirmation. Each
service description includes a list of the error values that the
CSTAUniversalFailureConfEvent may carry for that service as well as the
meanings of those values in the context of that service. The description of the
CSTAUniversalFailureConfEvent is found in Chapter 3 as well as in each
service description.

Call Control Services

4-4 Issue 2.2 Programmer’s Guide

Call Control Service Page Format

The pages describing each TSAPI call control service contain the following
sections, as appropriate:

Service Name and Description

The service name appears first. A description of that service immediately follows
the name.

Some Call control service descriptions state that the MERLIN LEGEND or MERLIN MAGIX
switch will leave connections in a certain state under certain conditions. This occurs in the
absence of feature interactions (that is, the users do not invoke any features that make
completion of the service impossible, such as hanging up). This feature interaction clause is
not explicitly restated on each page.

Service Request Parameters

A table lists the service request parameters and summarizes their use.

Scenario Diagram

A figure shows the devices, connections, and calls before and after successful
service invocation. In the diagrams, squares are devices and are labeled D1, D2,
etc. Circles are calls and are labeled C1, C2, etc. Lines are connections and
their label identifies the device and the call (for example D1C2 would be the
connection of device D1 to call C2.) Table 4-3 shows the symbols used to label
connections with their connection state.

Table 4-3. Symbols Used in Call Control Service Scenario Figures

Symbol Connection State
i Initiated (the extension is hearing dial tone, is in the process

of dialing, or has completed dialing but the call has not yet
originated)

a Alerting (often audible ringing, but not necessarily)

c Connected

h Held

ht, hc Held for Transfer, Held for Conference - these are used
when necessary to distinguish these states from Held

q Queued

* Any non-null state (the call appears at the device, and may
be connected, held, held-for-conference, held-for-transfer)

Call Control Service Page Format

Programmer’s Guide Issue 2.2 4-5

Return Values

A table lists the return values for the service request.

In all function returns, success values follow the TSAPI rules. If the requesting
application generated the invokeID value, then a successful function call returns
zero. If the TSAPI library generates the invokeID value, then a successful
function call returns the value of the invokeID. This is not explicitly re-stated for
each service. “Sending TSAPI Requests and Receiving Confirmations” in Chapter
3 describes invokeID usage in more detail.

Confirmation Event

This section names the TSAPI confirmation event for the service and contains a
table describing the confirmation event parameters.

CSTA Universal Failure Confirmation Event Error
Values

This section lists error values that the CSTAUniversalFailureConfEvent may
return to an application when a service request fails. Items in all capitals are
#defines from the TSAPI header files.

Request Syntax

This section contains C coding information for the service request.

Confirmation Event Syntax

This section contains C coding information for the service’s confirmation event.

Important Feature Interactions

This section describes important interactions between the call control service and
MERLIN LEGEND/MERLIN MAGIX switch features.

Call Control Services

4-6 Issue 2.2 Programmer’s Guide

cstaAnswerCall()

The cstaAnswerCall() service answers an alerting connection (alertingCall) at
an extension.

The MERLIN LEGEND and MERLIN MAGIX switches do not provide the Answer
Call service for any extension that it cannot take off-hook or that is not already
off-hook idle. If the extension does not meet these requirements, then an
application making a cstaAnswerCall() request for the extension will receive a
CSTAUniversalFailureConfEvent.

If successful, the effect is the same as if the user had selected and answered the
alerting appearance.

n If the extension is on-hook, the alertingCall alerting appearance is
preselected and the extension is forced off-hook on speakerphone.

n If there are multiple calls alerting at the extension, then the alertingCall
appearance is preselected and the extension is forced off-hook on
speakerphone.

n If the extension is off-hook idle, then the alertingCall appearance is
postselected and the connection is made to the speaker, headset, or
handset (whichever is off hook).

cstaAnswerCall()

Programmer’s Guide Issue 2.2 4-7

Service Request Parameters

Table 4-4. cstaAnswerCall() Parameters

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

alertingCall alerting connection containing both deviceID and
callID

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-1 illustrates a successful cstaAnswerCall() request where alertingCall
is the connection D1C1.

Before After

D1 D2 C1

a c

D2C1 is listening to ringback

D1 D2 C1

c c

D1C1 and D2C1 are talking

Figure 4-1. cstaAnswerCall() Scenario

Return Values

Table 4-5. cstaAnswerCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Call Control Services

4-8 Issue 2.2 Programmer’s Guide

Confirmation Event -
CSTAAnswerCallConfEvent

The CSTAAnswerCallConfEvent indicates that the switch has accepted the
request, validated the parameters, and signaled the extension to answer the call.
Application(s) monitoring the extension will receive a CSTAEstablishedEvent
when the extension connects to the call.

Table 4-6. CSTAAnswerCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ANSWER_CALL_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Errors

If the alertingCall connection cannot be answered, the MERLIN LEGEND and
MERLIN MAGIX switches return one of the errors below. For all error values
except GENERIC_UNSPECIFIED, the MERLIN LEGEND or MERLIN MAGIX
switch leave the alertingCall connection in the state that it was in before the
switch processed the cstaAnswerCall() request. GENERIC_UNSPECIFIED will,
in most instances, also leave the alertingCall connection in its initial state, but
there are a few circumstances where this cannot be guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaAnswerCall() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

n callID in alertingCall is not present on a supported button type at the
deviceID in alertingCall:

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

n The alertingCall connection could not be answered for some reason
other than the more specific reasons given below.

cstaAnswerCall()

Programmer’s Guide Issue 2.2 4-9

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
alertingCall is not valid. Some possible reasons are:

n No callID in alertingCall.

n The callID in alertingCall does not exist in the MERLIN LEGEND or
MERLIN MAGIX switch.

n the callID in alertingCall is not present at the deviceID in alertingCall.

n Invalid deviceID in alertingCall. One of the following may have occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

 deviceID is configured as a Single Line Set.

n The deviceID in alertingCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

INVALID_OBJECT_STATE – The alertingCall connection is a valid connection
identifier (the call is present at the extension) and one of the following
conditions occurred:

n The callID in alertingCall is not alerting (it may have been answered).

n The deviceID in alertingCall is active on another call.

n The deviceID in alertingCall is Responding, but is not in Normal Mode.

n Answering alertingCall would disrupt some activity already in progress
at the extension.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaAnswerCall() exceeds the maximum number of outstanding requests
permitted at either the driver or the switch.

RESOURCE_BUSY – A needed resource is not in service. Possible causes include:

n The switch is processing another TSAPI request for the extension in
alertingCall. Services such as cstaMakeCall() and
cstaConsultationCall() may be in progress when a cstaAnswerCall()
request arrives.

REQUEST_TIMEOUT_REJECTION – The MERLIN LEGEND PBX or MERLIN
MAGIX PBX driver sent the request to the switch, but did not receive a
response within the allotted time. This is usually an indication that there is a
problem with the CTI link.

Call Control Services

4-10 Issue 2.2 Programmer’s Guide

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver, or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaAnswerCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *alertingCall, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAAnswerCallConfEvent_t answerCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAAnswerCallConfEvent_t {
 Nulltype null;
} CSTAAnswerCallConfEvent_t;

Important Feature Interactions

An application must receive a CSTADeliveredEvent for a connection prior to
using cstaAnswerCall() to answer the connection because the
CSTADeliveredEvent provides the application with the connection identifier that
it must use to answer the call. Certain feature interactions may cause calls at
buttons to transition into states that are outside of the TSAPI model (particularly
associative and bridged states) that will prevent the application from receiving a
CSTADeliveredEvent. In such a case, the application will not be able to use
cstaAnswerCall() to answer an alerting call. Refer to the scenarios in
Chapter 12 for detailed information.

cstaAnswerCall()

Programmer’s Guide Issue 2.2 4-11

Barge-In
A Barge-In call arriving at an idle extension with Do Not Disturb enabled will alert;
an application may use cstaAnswerCall() to answer such a call.

A Barge-In at an extension active on a call does not alert (the Barge-In call
merges with the active call.) An application may not use cstaAnswerCall() to
answer such a Barge-In call.

Bridged Appearances (SSA and DFT buttons)
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaAnswerCall() to answer
an alerting call on an SSA or DFT button.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaAnswerCall() to answer an alerting call on a DFT button, but may not use
cstaAnswerCall() to answer an alerting call on an SSA button.

Call Pickup
An application cannot use cstaAnswerCall() to pick up a call.

Callback Queuing (CBQ)
When the originator of a call invokes the Callback Queuing (CBQ) feature and
hangs up or places the call on associative hold, the MERLIN LEGEND and
MERLIN MAGIX switches will priority alert the originator when the destination is
available.

An application can not use the cstaAnswerCall() service to answer the CBQ
alert at the originator.

When the MERLIN LEGEND and MERLIN MAGIX switches place the callback
call to the destination, an application may use cstaAnswerCall() to answer the
alerting call at the destination (subject to extension and button type restrictions.)

Camp On Return
An application may use cstaAnswerCall() to answer an alerting Camp On return
call.

Coverage
Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaAnswerCall() to answer an alerting call on a Primary, Secondary or Group
Coverage button.

Prior to MERLIN MAGIX Release 2.0, an application can not use
cstaAnswerCall() to answer an alerting call on a Primary, Secondary or Group
Coverage button.

Call Control Services

4-12 Issue 2.2 Programmer’s Guide

Direct Inward Dial (DID)
An application may use cstaAnswerCall() to answer either assigned or
unassigned DID calls alerting on an SA button.

Do Not Disturb (DND)
With a small number of exceptions, calls do not alert at an extension with DND
active, so an application cannot use cstaAnswerCall() to answer calls at such
an extension.

Barge-In calls will alert at an extension with DND active (see Barge-In above). An
application may use cstaAnswerCall() to answer such a call.

When an extension has DND active and a call arrives on the DFT, the call alerts
visually (but not audibly). Beginning with MERLIN MAGIX Release 2.0, an
application may use cstaAnswerCall() to answer such a call.

If a coverage receiver calls the sender with DND active, the call will alert on an
SA button, so an application may use cstaAnswerCall() to answer such a call.

DGC
An application may use cstaAnswerCall() to answer an alerting DGC call on an
SA button.

Forward On Busy
An application monitoring a station that receives a Forward On Busy call may use
cstaAnswerCall() to answer the forwarded call.

Forward/Follow Me
When an extension forwards a call, the call may alert at the forwarding extension
before the call forwards. Whether the call alerts there, and the duration of the
alerting, depends on which variation of the forwarding feature is active.

If a call alerts at a forwarding extension, an application may use
cstaAnswerCall() to answer the call at the forwarding extension while the call is
alerting at the extension.

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application monitoring an extension where a forwarded
call alerts will not receive a CSTADeliveredEvent for the forwarded call. Since an
application monitoring an extension where a forwarded call alerts does not
receive a CSTADeliveredEvent event with a connection identifier for the call, the
application cannot use cstaAnswerCall() to answer the forwarded call.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring an
extension where a forwarded call alerts will receive a CSTADeliveredEvent for
the forwarded call, and may use cstaAnswerCall() to answer the call at the
forwarding destination.

cstaAnswerCall()

Programmer’s Guide Issue 2.2 4-13

MLX and 4400-series Headset
An application may use cstaAnswerCall() to answer an alerting call at an MLX
or 4400-series extension where a headset is in use and the headset auto answer
feature is off.

Multiple Call Appearances
When a call alerts on an SA button of a monitored station, and also alerts on a
DFT or DPT button at the same station two CSTADeliveredEvents are
generated. In a case where the call on the SA button is a DGC call, the call will be
cleared from the SA button if it is not answered within a specific time interval. If
the alerting call is cleared from the SA button a CSTAConnectionClearedEvent
is generated. Although the call may continue to alert on the DFT/DPT button the
application should assume the call is cleared from all buttons at the station. Only
one CSTAConnectionClearedEvent is generated for a call at a monitored
station. Attempts to use cstaAnswerCall() to answer the DFT/DPT will fail.

Night Service
An application may use cstaAnswerCall() to answer a night service call on an
SA button.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaAnswerCall() to answer a night service call on a DFT button.

Park Return
An application may use cstaAnswerCall() to answer a Park return call alerting
on an SA button.

Pools (DPT buttons)
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaAnswerCall() to answer
an alerting call on a Pool button.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaAnswerCall() to answer an alerting call on a DPT button.

Reminder
An application monitoring an extension where a Reminder Service call alerts will
not receive CSTADeliveredEvent for the reminder call. Since an application
monitoring an extension where a reminder call alerts does not receive an event
with a connection identifier for the call, the application cannot use
cstaAnswerCall() to answer the reminder call.

Remote Access
An application may use cstaAnswerCall() to answer a remote access call on an
SA button.

Call Control Services

4-14 Issue 2.2 Programmer’s Guide

Ringing Line Preference (RLP)
An application uses the alertingCall parameter to specify the alerting call that is
to be answered. This selection overrides any Ringing Line Preference
administered for the answering extension.

Service Observing
An application may use cstaAnswerCall() to answer a call at a station that is
being observed.

An application may not use cstaAnswerCall() to answer an observed call at the
Service Observer

Single Line Sets
Beginning with MERLIN MAGIX Release 2.0, Single Line Sets may be monitored
and controlled. However, an application may not use cstaAnswerCall() to
answer a call at a Single Line Set.

System Access Originate Only
An application may use cstaAnswerCall() to answer an alerting call on an SA
button of this type. (A call may alert on an SA Originate-Only button for certain
types of return calls.)

System Access Ring/Voice
An application may use cstaAnswerCall() to answer an alerting call on an SA
button of this type.

System Access Voice Announce
An application may not use cstaAnswerCall() to answer a voice announce call.

Transfer Return
An application may use cstaAnswerCall() to answer an alerting transfer return
call on an SA button.

cstaClearConnection()

Programmer’s Guide Issue 2.2 4-15

cstaClearConnection()

The cstaClearConnection() service clears the connection call. Specifically, the
callID in connection call is disconnected from the deviceID in connection call. In
some cases, this results in the switch tearing down all connections to a call (as it
does when one party hangs up on a two-party call).

Both the MERLIN LEGEND and MERLIN MAGIX switches support this service for
any connection that is in a state such that the deviceID extension user could go
on-hook and drop the connection. This includes an active call at the extension,
and calls where the user is hearing ringback, busy, reorder, etc. It does not
include held or alerting connections at the extension.

When an application successfully clears a connection:

n If the connection was active on the speakerphone, then the MERLIN
LEGEND or MERLIN MAGIX switch hangs up the speakerphone and the
extension is on-hook.

n If the connection was active on the handset, then the MERLIN LEGEND or
MERLIN MAGIX switch leaves the extension off-hook idle.

n If the connection was active on the headset, then the MERLIN LEGEND or
MERLIN MAGIX switch presses the HANGUP button on behalf of the user
and leaves the extension off-hook idle and the DSS console LED goes off.

When an application successfully clears a connection, this frees the connectionID
associated with the connection call.

Service Request Parameters

Table 4-7. cstaClearConnection() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

call connection to clear. Must contain deviceID and callID

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-2 illustrates various cstaClearConnection() scenarios where call is the
connection D1C1.

Call Control Services

4-16 Issue 2.2 Programmer’s Guide

Before After

D1 D2 C1

c,i *

D2C1 is null when D1C1 is i

D1 D2

D1 D2 C1

c *

D3 *

D1 is conference originator

D1 D2

D3

D1 D2 C1

c h

D3 h

D1 D2

D3

The MERLIN LEGEND or MERLIN MAGIX

switch tears down call when all endpoints are
held

D1 D2 C1

c *

D3 *

This case applies so long as D1 is not the
conference originator and either D2 or D3 (or both)

is connected.

D1 D2 C1

*

D3 *

This case applies so long as D1 is not the
conference originator and either D2 or D3 (or

both) is connected.

Figure 4-2. cstaClearConnection() Scenarios

cstaClearConnection()

Programmer’s Guide Issue 2.2 4-17

Return Values

Table 4-8. cstaClearConnection() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event
CSTAClearConnectionConfEvent

The CSTAClearConnectionConfEvent indicates that the switch has accepted
the request, validated the parameters, and signaled the extension to clear the
connection. Application(s) monitoring the extension will receive a
CSTAConnectionClearedEvent when the connection clears.

Table 4-9. CSTAClearConnectionConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_CLEAR_CONNECTION_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If the call connection cannot be cleared, the MERLIN LEGEND or MERLIN
MAGIX switch returns one of the errors below. For all error values except
GENERIC_UNSPECIFIED, the MERLIN LEGEND or MERLIN MAGIX switch
leaves the call connection in the state that it was in before the switch processed
the cstaClearConnection() request. GENERIC_UNSPECIFIED will, in most
instances, also leave the connections in their initial state, but there are a few
circumstances where this cannot be guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaClearConnection() request, the CSTAUniversalFailureConfEvent
will contain one of the following values in the error parameter:

Call Control Services

4-18 Issue 2.2 Programmer’s Guide

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

n callID in call is not present on a supported button type at the deviceID in
call.

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

n The connection call could not be cleared for some reason other than
the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier call is
not valid. Some possible reasons are:

n No callID in call.

n The callID in call does not exist in the MERLIN LEGEND or MERLIN
MAGIX switch.

n the callID in call is not present at the deviceID in call.

n Invalid deviceID in call. One of the following may have occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

n The deviceID in call is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

INVALID_OBJECT_STATE – The deviceID in call is not in the correct state.
Possible causes include:

n The call connection is held or alerting (cannot clear a held or alerting
connection).

n The deviceID in call is Responding, but is not in Normal Mode.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the cstaClear-
Connection() exceeds the maximum number of outstanding requests
permitted at either the driver or the switch.

RESOURCE_BUSY - A needed resource is not in service. Possible causes
include:

cstaClearConnection()

Programmer’s Guide Issue 2.2 4-19

n The switch is processing another TSAPI request for the extension in
call. Services such as cstaMakeCall() and cstaConsultationCall()
may be in progress when a cstaClearConnection() request arrives.

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND or MERLIN MAGIX
PBX driver sent the request to the switch, but did not receive a response
within the allotted time. This is usually an indication that there is a problem
with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX Driver or MERLIN MAGIX PBX Driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaClearConnection (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *call, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAClearConnectionConfEvent_t clearConnection;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAClearConnectionConfEvent_t {
 Nulltype null;
} CSTAClearConnectionConfEvent_t;

Call Control Services

4-20 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Bridging (SSA and DFT buttons)
The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches will deny any request to clear a connection appearing on an
SSA or DFT button.

Beginning with MERLIN MAGIX Release 2.0, an application may use cstaClear-
Connection() to clear a call on a DFT button. An application may not use csta-
ClearConnection() to clear a connection appearing on an SSA button.

Call Screening
An application may use the cstaClearConnection() service to clear the
connection of a station participating in a screened call.

An application may use the cstaClearConnection() service to clear the
connection of a station that is screening a call.

Coverage
The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches will deny any request to clear a connection appearing on a
Primary, Secondary or Group Coverage button.

Beginning with MERLIN MAGIX Release 2.0, an application may use csta-
ClearConnection() to clear a connection appearing on a Primary, Secondary or
Group Coverage button.

Direct Facility/Pool Termination (DFT/DPT)
The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches will deny any request to clear a connection appearing on a
DFT or DPT button.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaClearConnection() to clear a connection appearing on a DFT or DPT
button.

Paging
The MERLIN LEGEND and MERLIN MAGIX switches will deny any request to
clear a connection appearing at a group page member.

The MERLIN LEGEND and MERLIN MAGIX switches will clear a connection
appearing at an SA button at the paging extension.

cstaClearConnection()

Programmer’s Guide Issue 2.2 4-21

Service Observing
An application may use cstaClearConnection() to clear a connection at a
station that is being observed.

An application may use cstaClearConnection() to clear an observer’s
connection to a call that is being observed.

Single Line Sets
The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches will deny a request to clear a connection appearing at a
Single Line Set.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaClearConnection() to clear a connection at a Single Line Set that is
plugged in.

Call Control Services

4-22 Issue 2.2 Programmer’s Guide

cstaConferenceCall()

The cstaConferenceCall() service conferences a held-for-conference or held-
for-transfer connection and an active connection at a common extension. The
deviceID in the heldCall and activeCall must specify the common extension.

The heldCall must be either on hold-for-conference or on hold-for-transfer. Note
that the cstaConsultationCall() service puts a call on hold-for-transfer, thus
cstaConferenceCall() can successfully follow cstaConsultationCall().

The MERLIN LEGEND and MERLIN MAGIX switches will deny an application
request for conference after successful execution of cstaHoldCall() and
cstaMakeCall() services since the cstaHoldCall() service does not put the call
on hold-for-conference (or on hold-for-transfer).

The MERLIN LEGEND and MERLIN MAGIX switches will permit the interleaving
of manual and CTI operations to affect a conference as follows:

n Prerequisite: The user has an active connection and the application has a
connectionID for that connection. This may occur when

 the user manually answers an incoming call (application has
connectionID from Delivered and Established events),

 the application uses the cstaAnswerCall() service to answer an
incoming call,

 the application uses the cstaMakeCall() service to make a call, or

 the user manually places a call to another extension.

n The conference originator manually presses CONFERENCE (or TRANSFER)
button. The previously active connection is now held-for-conference (or
held-for-transfer.)

n The conference originator becomes connected on a second call either
through using the cstaMakeCall() service to make a call or answering an
incoming call (manually or using the cstaAnswerCall() service. The
application now has the connectionIDs for the active call and the held call.

n The application makes a cstaConferenceCall() request giving the
connectionIDs for the held and active calls.

Conferencing must adhere to the MERLIN LEGEND and MERLIN MAGIX switch
limits for conferencing: the number of internal parties cannot exceed three; the
number of external parties cannot exceed two; and the total number of parties
cannot exceed five.

cstaConferenceCall()

Programmer’s Guide Issue 2.2 4-23

Service Request Parameters

Table 4-10. cstaConferenceCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

heldCall held connection. Must contain deviceID and callID

activeCall active connection. Must contain deviceID and callID

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-3 illustrates various cstaConferenceCall() scenarios where heldCall is
the connection D1C1 and activeCall is the connection D1C2.

Before After

c

D1 D2 C1
hc,ht c

D3
a,c,h C2

c

D1 D2 c

D3
a,c,h C2

c

D1 D2 C1
hc c

D3 a,c,h C2

D4
external

c

There may also be an additional connection D5C1

in the same initial states as D4C1.

c

D1 D2 c

D3
a,c,h C2

D4
external

c

If D5C1 was present, there will now be D5C2

in the same final states as D4C2.

Figure 4-3. cstaConferenceCall() Scenarios

Call Control Services

4-24 Issue 2.2 Programmer’s Guide

Return Values

Table 4-11. cstaConferenceCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted.

Confirmation Event -
CSTAConferenceCallConfEvent

The deviceID in the newCall parameter in the confirmation event will be the
deviceID of the conferencing extension (the common deviceID in heldCall and
activeCall).

In MERLIN LEGEND and MERLIN MAGIX CTI, the callID in the newCall will be
the callID from the activeCall. The application designer should not, however, use
this fact in designing an application. As the switch supports more types of
extensions and calls in the future, this may not continue to be the case.

The CSTAConferenceCallConfEvent indicates that the switch has accepted the
request, validated the parameters, performed necessary call processing, and
signaled the extension to merge the connections. Application(s) monitoring any of
the extensions participating in the conference call will receive a
CSTAConferencedEvent when the conference occurs.

cstaConferenceCall()

Programmer’s Guide Issue 2.2 4-25

Table 4-12. CSTAConferenceCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_CONFERENCE_CALL_CONF

invokeID identifies service request within stream

newCall connectionID containing DeviceID and CallID of the
resulting conference call at the conferencing extension

connList The MERLIN LEGEND and MERLIN MAGIX switches do
not provide this optional TSAPI parameter. In the
ConnectionList_t structure, count is set to zero and
the connection pointer is set to NULL.

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the alertingCall and heldCall cannot be conferenced, MERLIN LEGEND/
MERLIN MAGIX CTI returns one of the errors below. For all error values except
GENERIC_UNSPECIFIED, the MERLIN LEGEND and MERLIN MAGIX switches
leave the alertingCall and heldCall connections in the state that they were in
before the cstaConferenceCall() request was processed. GENERIC_-
UNSPECIFIED will, in most instances, also leave the connections in their initial
state, but there are a few circumstances where this cannot be guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaConferenceCall() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

n activeCall is Senderized.

n activeCall is in DGC queue.

n It attempts to complete a conference to a busy extension.

n the callID in activeCall or heldCall is not present on a supported button
type at the extension.

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

Call Control Services

4-26 Issue 2.2 Programmer’s Guide

n Processing the request would exceed the limit for the number of parties
on a conference call permitted by the MERLIN LEGEND or MERLIN
MAGIX switch.

n The activeCall or heldCall specifies an observed call at the station of a
service observer.

n The activeCall and heldCall connections could not be answered for
some reason other than the more specific reasons given below.

GENERIC_OPERATION – The deviceIDs in activeCall and heldCall are not
identical (they must be identical since the conference must occur at an
extension common to the two calls.)

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
activeCall or heldCall is not valid. Some possible reasons are:

n No callID in activeCall or heldCall.

n The callID in activeCall or heldCall does not exist in MERLIN LEGEND
or MERLIN MAGIX switch.

n the callID in activeCall is not present at the deviceID in activeCall.

n the callID in heldCall is not present at the deviceID in heldCall.

n Invalid deviceID in activeCall or heldCall. One of the following may
have occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

n The deviceID in activeCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The deviceID in heldCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

INVALID_OBJECT_STATE – The activeCall and heldCall connections are valid
(the calls are present at the extension) and one of the following conditions
occurred:

n The callID in activeCall is present at the deviceID in activeCall, but the
connection is not the active connection at the extension. It is on hold or
in some other state.

n The deviceID in activeCall is Responding, but is not in Normal Mode.

n The callID in activeCall is a conference call and the deviceID in
activeCall is not the conference originator (only the conference
originator can add additional parties to a conference call).

cstaConferenceCall()

Programmer’s Guide Issue 2.2 4-27

n The callID in heldCall is present at the deviceID in heldCall, but the
connection is not held-for-conference or held-for-transfer. It is in some
other state. This occurs if the heldCall is on regular hold.

n The deviceID in heldCall is Responding, but is not in Normal Mode.

n The last party added to the call was not added on an SA button and a
cstaConferenceCall() request was made.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaConferenceCall() exceeds the maximum number of outstanding
requests permitted at either the driver or the switch.

RESOURCE_BUSY – A needed resource is not in service. Possible causes include:

n The switch is processing another TSAPI request for the extension in
alertingCall. Services such as cstaMakeCall() and
cstaConsultationCall() may be in progress when a
cstaConferenceCall() request arrives.

n The application requested cstaConferenceCall() before the MERLIN
LEGEND or MERLIN MAGIX switch sent the confirmation to
cstaConsultationCall().

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver sent the request to the switch, but did not
receive a response within the allotted time. This is usually an indication that
there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver, or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaConferenceCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *heldCall, /* INPUT */
 ConnectionID_t *activeCall, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

Call Control Services

4-28 Issue 2.2 Programmer’s Guide

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTACConferenceCallConfEvent_t conferenceCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAConferenceCallConfEvent_t {
 ConnectionID_t newCall;
 ConnectionList_t connList;
} CSTAConferenceCallConfEvent_t;

Important Feature Interactions

Auto Answer All - AAA (ATL Only) – MERLIN
LEGEND and MERLIN MAGIX 1.0 only

The cstaConferenceCall() service will successfully complete when the party
answering activeCall has used Auto Answer All to answer activeCall.

Auto Answer Intercom - AAI (ATL Only) -
MERLIN LEGEND and MERLIN MAGIX 1.0
only

The cstaConferenceCall() service will successfully complete when the party
answering activeCall has used Auto Answer Intercom to answer activeCall.

Call Screening
An application may use the cstaConferenceCall() service to complete a
conference operation at a station that is participating in a screened call.

An application may not use the cstaConferenceCall() service to complete a
conference operation at a station that is screening a call.

Call Waiting
Call Waiting may queue the consultation call at the destination and the
cstaConferenceCall() will successfully complete the conference.

The cstaConferenceCall() service will not conference a Call Waiting call with
another call.

cstaConferenceCall()

Programmer’s Guide Issue 2.2 4-29

Conferencing
The cstaConferenceCall() service operates the same way as manual
conference completion (the second press of the CONFERENCE button). Refer to the
MERLIN LEGEND Advanced Communications System Feature Reference or
MERLIN MAGIX Integrated System Feature Reference for complete information.

The activeCall connection may, itself, be a conference call so long as the
conferencing user is the conference originator of that call. When activeCall is a
conference, that conference must appear on at least one SA button on the
conferencing extension. Further, the last party added to the activeCall
conference must have been added on an SA button. The cstaConferenceCall()
request will fail if the last party was added on a non-SA button in MERLIN
LEGEND and MERLIN MAGIX Releases 1.0 and 1.5. Beginning with MERLIN
MAGIX Release 2.0 this restriction is lifted.

Callback Queuing (CBQ)
The cstaConferenceCall() service will not conference a Callback call with
another call.

Coverage
The cstaConferenceCall() service will successfully conference a call where the
far end has the call appearing on a COVER button.

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, if the activeCall appears only on a Primary, Secondary or
Group COVER button at an extension, cstaConferenceCall() cannot conference
that call on behalf of that extension.

Beginning with MERLIN MAGIX Release 2.0, cstaConferenceCall() will
successfully conference a call when the activeCall or heldCall is on a Primary,
Secondary or Group COVER button.

Direct Facility Termination/Personal Lines
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, if the activeCall appears only on a DFT button at an
extension, then the cstaConferenceCall() service cannot conference that call on
behalf of that extension.

Beginning with MERLIN MAGIX Release 2.0, the cstaConferenceCall() service
will successfully conference a call when the activeCall or heldCall is on a DFT
button.

When activeCall appears on both a DFT button and an SA button at an
extension (activeCall may already be a conference) then cstaConferenceCall()
can conference the call on behalf of that extension.

Call Control Services

4-30 Issue 2.2 Programmer’s Guide

Group Calling (DGC)
The cstaConferenceCall() service will fail if activeCall is queued (same as
manual conference completion operation).

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX Release 1.0
environment, if an application attempts to make a consultation call to a Calling
Group as a means to conference another call with that Calling Group, the csta-
ConsultationCall() request will be denied.

Beginning with MERLIN MAGIX Release 1.5, if an application attempts to make a
consultation call to a Calling Group as a means to conference another call with
that Calling Group, the cstaConsultationCall() request will be granted.

Networking
In a MERLIN LEGEND (Release 6.0 and later) and MERLIN MAGIX (Release
1.0) environment, if an application attempts to make a consultation call as a
means to conference a call with a station on another MERLIN LEGEND or
MERLIN MAGIX switch in the private network, the cstaConsultationCall()
request will be denied. The user may make the consultation call and the
conference call using manual operations at the station set.

Beginning with MERLIN MAGIX Release 1.5, if an application attempts to make a
consultation call as a means to conference a call with a station on another
MERLIN LEGEND or MERLIN MAGIX switch in the private network, the csta-
ConsultationCall() request will be granted.

Pools
In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) environment, if the activeCall appears only on a DPT button at an
extension, then cstaConferenceCall() cannot conference that call on behalf of
that extension.

Beginning with MERLIN MAGIX Release 2.0, the cstaConferenceCall() service
will successfully conference a call when the activeCall or heldCall is on a DPT
button.

Senderized Operation
The cstaConferenceCall() service will fail if activeCall is Senderized (same as
manual conference completion operation).

Service Observing
An application may use cstaConferenceCall() to complete a conference
operation at a station that is being observed.

cstaConferenceCall()

Programmer’s Guide Issue 2.2 4-31

The cstaConferenceCall() service will fail when either activeCall or heldCall
specifies an observed call at the station of a service observer; a service observer
may not use the Conferencing feature with an observed call.

Single Line Sets
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaConferenceCall() to
complete a conference operation at a Single Line Set.

Beginning with MERLIN MAGIX Release 2.0, an application may use csta-
ConferenceCall() to complete a conference operation at a Single Line Set.

System Access (SA)/Shared System Access (SSA)
Buttons

The cstaConferenceCall() service will successfully conference a call where the
far end has the call appearing on an SSA button.

The cstaConferenceCall() service will fail when the activeCall is on an SSA
button

Voice Announce
When a consultation call arrives at an extension with Voice Announce, the
arriving call is answered on speaker and there is no CSTADeliveredEvent for the
arriving call. There is a CSTAEstablishedEvent. When a conference operation
joins the consultation call with the held call, the Voice Announce call clears
(monitoring applications will see CSTAConnectionClearedEvents) and the
newly joined call alerts at the consultation destination. Monitors will receive a
CSTADeliveredEvent for the newly alerting call. The connection identifier for the
call may contain a call identifier that is different than that of the call answered on
Voice Announce.

See Chapter 12 for an example of a Voice Announce event flow.

Call Control Services

4-32 Issue 2.2 Programmer’s Guide

cstaConsultationCall()

The cstaConsultationCall() service places the active connection on hold-for-
transfer at an extension and makes a consultation call from that extension to
another device. Specifically, activeCall specifies the extension making the
consultation call and the active call that is to be placed on hold-for-transfer. The
activeCall cannot be a conference call.

To facilitate the programming of consultation scenarios in call center and
customer service applications, the MERLIN LEGEND and MERLIN MAGIX
switches pass information about the original call on the activeCall to applications
monitoring the calledDevice in the events resulting from the
cstaConsultationCall() service. This original call information allows an
application monitoring the extension receiving the consultation call to pop a
screen at that extension using the original call’s information as the consultation
call alerts (or is answered). The CSTADeliveredEvent and
CSTAEstablishedEvent carry the Original Call information as private data. Refer
to the MERLIN LEGEND Private Data Library and Original Call Information” and
“MERLIN MAGIX Private Data Library and Original Call Information” in Chapter 2
for more details about how to make use of Original Call Information. See the
CSTADeliveredEvent and CSTAEstablishedEvent descriptions for further
information on the event contents.

The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Release
1.0) switches restrict the calledDevice to an internal extension. Further, the
internal extension must not be a DGC group, Park Zone, Telephone Paging Zone,
Listed Directory Number (LDN), modem pool, or a feature access code (* or #
code).

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may be any valid
number including; a DGC group, Park Zone, Telephone Paging Zone, LDN,
modem pool, networked extension, external number or a feature access code.
Note, however, that when the calledDevice contains a feature access code,
feature activation is not guaranteed.

The MERLIN LEGEND and MERLIN MAGIX switches will originate the
consultation call only on an SA-RING appearance, not on an SA-VOICE
appearance.

Once the activeCall is on hold, the switch will attempt to originate the
consultation call in the same manner as it attempts to originate a call for
cstaMakeCall().

 NOTE
If a consultation call has been made and then the application needs to
retrieve the held call, the consultation call must be cleared or placed on
hold before retrieving the held call.

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-33

 NOTE:
If the far end of the activeCall is a local MERLIN LEGEND or MERLIN
MAGIX switch extension that has that call held, then the MERLIN LEGEND
or MERLIN MAGIX switch returns a CSTAUniversalFailureConfEvent
with a cause of GENERIC_UNSPECIFIED. The MERLIN LEGEND or
MERLIN MAGIX switch tears down the call. The consultation call is not
made.

Service Request Parameters

Table 4-13. cstaConsultationCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

activeCall active connection. Must contain deviceID and callID

calledDevice number to call
privateData NULL, not used for this service request

Call Control Services

4-34 Issue 2.2 Programmer’s Guide

Scenario Diagram

Figure 4-4 illustrates various cstaConsultationCall() scenarios where
activeCall is the connection D1C1 and calledDevice is the device D3.

Before After

D1 D2 C1

c c

D1 D2 C1

ht c

D3 C2
i

D1 D2 C1

c h

The MERLIN LEGEND and MERLIN MAGIX
switches clear a call when all parties are on
hold, so C1 no longer exists; the MERLIN
LEGEND or MERLIN MAGIX switch does not
initiate the consultation call.

Figure 4-4. cstaConsultationCall() Scenarios

Return Values

Table 4-14. cstaConsultationCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted.

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-35

Confirmation Event -
CSTAConsultationCallConfEvent

The deviceID in the newCall parameter in the confirmation event is the deviceID
from the callingDevice request parameter.

The MERLIN LEGEND or MERLIN MAGIX switch sends the
CSTAConsultationCallConfEvent after it has placed the activeCall on hold and
prior to originating the consultation call. A subsequent
CSTAServiceInitiatedEvent will indicate origination of the consultation call.

Table 4-15. CSTAConsultationCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_CONSULTATION_CALL_CONF

invokeID identifies service request within stream

newCall connectionID containing DeviceID and CallID of the
consultation call at the extension placing the consultation
call

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the MERLIN LEGEND or MERLIN MAGIX switch cannot place the active call on
hold and originate the consultation call, then the MERLIN LEGEND or MERLIN
MAGIX switch returns one of the errors below. For all error values except
GENERIC_UNSPECIFIED, the MERLIN LEGEND and MERLIN MAGIX switches
leave the activeCall connection in the state that it was in before the
cstaConsultationCall() request1 was processed. GENERIC_UNSPECIFIED
will, in most instances, also leave the activeCall connection in its initial state, but
there are a few circumstances where this cannot be guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaConsultationCall() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

n activeCall is Senderized.

1 Of course, if the far end on connection (D2C1) is held, the activeCall will be torn down if the

consultation request proceeded far enough to put connection D1C1 on hold (since all parties on
the call were on hold).

Call Control Services

4-36 Issue 2.2 Programmer’s Guide

n activeCall connection is a conference call and the device in the
activeCall connection is not the conference originator.

n activeCall is on hold at the far end connection.

n the callID in activeCall is not present on a supported button type at the
deviceID in activeCall.

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

n activeCall specifies a screened call at the station of a Call Screener.

n activeCall specifies an observed call at the station of a Service
Observer.

n The consultation call could not be made for some reason other than
those shown below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CALLED_DEVICE – The deviceID in calledDevice is invalid. This may
be because:

n For releases prior to MERLIN MAGIX Release 1.5, the deviceID
specified by calledDevice is not a local extension number.

n The deviceID in calledDevice specifies the same extension as the
deviceID in activeCall. (An extension may not consult to itself.)

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
activeCall is not valid. Some possible reasons are:

n No callID in activeCall.

n The callID in activeCall does not exist in the MERLIN LEGEND or
MERLIN MAGIX switch.

n callID in activeCall is not present at the deviceID in activeCall.

n Invalid deviceID in activeCall. One of the following may have occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

n The deviceID in activeCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-37

INVALID_OBJECT_STATE – The activeCall connection is a valid connection
identifier (the call is present at the extension) and one of the following
conditions occurred:

n The activeCall connection is a conference call and the deviceID
specified in activeCall is the conference originator.

n The callID in activeCall is present at the deviceID in activeCall, but it is
not in the active state.

n The deviceID in activeCall is active on another call.

n The deviceID in activeCall is Responding, but is not in Normal Mode.

n There is not an SA button available to place the consultation call on the
deviceID specified in activeCall.

n There is already another call on hold-for-transfer or on hold-for-
conference at the deviceID specified in activeCall.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaConsultationCall() exceeds the maximum number of outstanding
requests permitted at either the driver or the switch.

RESOURCE_BUSY – A needed resource is busy. Possible causes include:

n The switch is processing another TSAPI request for the extension in
activeCall. Services such as cstaMakeCall() and
cstaConsultationCall() may be in progress when a
cstaConsultationCall() request arrives.

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver sent the request to the switch, but did not
receive a response within the allotted time. This is usually an indication that
there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaConsultationCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *activeCall, /* INPUT */
 DeviceID_t *calledDevice, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Call Control Services

4-38 Issue 2.2 Programmer’s Guide

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAConsultationCallConfEvent_t consultationCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAConsultationCallConfEvent_t {
 ConnectionID_t newCall;
} CSTAConsultationCallConfEvent_t;

Important Feature Interactions

Account Code/Forced Account Code
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0
and later), the calledDevice must be a local extension and should not contain
account code information.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain an
account code. However, the account code will be ignored.

Authorization Code
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice must be a local extension, so it cannot contain an
authorization code.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain an
authorization code.

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-39

Automatic Line Selection and Ringing Line
Preference

The cstaConsultationCall() service selects an origination appearance using the
same method as One Touch Transfer described in the One-Touch Transfer With
Manual Completion feature. This overrides Automatic Line Selection or Ringing
Line Preference administration.

Automatic Route Selection (ARS)
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice must be a local extension, so it cannot contain
ARS digits.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain ARS
digits.

Central Office Trunks
The calledDevice parameter in a cstaConsultationCall() request cannot be a
trunk identifier.

Call Screening
An application may use cstaConsultationCall() to make a consultation call at a
station that is participating in a screened call. However, when activeCall is
placed on hold-for-transfer, the Call Screener will be dropped from the call.

The cstaConsultationCall() service will fail when activeCall specifies a
screened call at the station of a Call Screener.

Call Waiting
The cstaConsultationCall() service is successful if the consultation call waits at
the calledDevice.

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice must be a local extension, so it cannot contain the
Call Waiting Pickup code.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain the
Call Waiting Pickup code.

Callback Queuing (CBQ)
The cstaConsultationCall() service is successful if the originating extension has
Automatic Callback Queuing enabled.

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice cannot contain the Selective Callback feature
activation code.

Call Control Services

4-40 Issue 2.2 Programmer’s Guide

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain the
Selective Callback feature activation code.

Conferencing
The activeCall cannot be a conference call.

Coverage
The cstaConsultationCall() service is successful whether or not the
calledDevice is a coverage sender or has coverage off.

Prior to MERLIN MAGIX Release 2.0, the activeCall cannot be on a Primary,
Secondary or Group Coverage button.

Beginning with MERLIN MAGIX Release 2.0, the activeCall can be on a Primary,
Secondary or Group Coverage button.

Through DGC Group Coverage, a consultation call to an extension may be
delivered to a DGC Group. If calledDevice is an extension that is out of service
(not plugged in), and is a Group Coverage sender with a DGC Group as the
Group Coverage receiver, then the consultation call will route to the DGC Group.

Dial Plan
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the deviceID in the calledDevice is valid if the leading digits are a
valid extension in the dial plan. The switch will dial any additional digits entered
after the extension.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice is valid as long as
it is not the same as the deviceID in activeCall (i.e., an extension may not consult
with itself).

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice must be a local extension, so it may not contain *,
#, feature or programming code entries.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice can contain the *,
#, feature or programming code entries.

The calledDevice may contain the operator code of 0.

Direct Facility/Pool Termination
Beginning with MERLIN MAGIX Release 2.0, the activeCall can be on a DFT or
DPT button.

Prior to MERLIN MAGIX Release 2.0, the activeCall can not be on a DFT or DPT
button.

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-41

Direct Voice Mail
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it may not contain the feature code for a direct call
to Voice Mail.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain the
feature code for a direct call to Voice Mail.

Do Not Disturb
The cstaConsultationCall() service is successful whether or not the
calledDevice has Do Not Disturb enabled.

End-Of-Dialing (Loop and Ground Start Trunks)
When the active call (C1 in the diagrams above) is connected on a Loop or
Ground Start trunk, the users may be able to talk before the switch timers
transition the connection to End-of-Dialing. If an application requests
cstaConsultationCall() before the transition to End-of-Dialing on this
connection, the request will fail.

External Numbers
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot be an external number.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice can be an
external number.

Far End Disconnect
If the far-end party on the activeCall hangs up while the MERLIN LEGEND or
MERLIN MAGIX switch is processing the cstaConsultationCall() request, then
the MERLIN LEGEND or MERLIN MAGIX switch places the consultation call and
returns the CSTAConsultationCallConfEvent. The application will receive call
events reflecting the far end disconnect and placement of the consultation call.

Group Calling (DGC)
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so cannot be a DGC group. It may contain the
extension of a DGC Group member.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice may contain a
DGC group.

Call Control Services

4-42 Issue 2.2 Programmer’s Guide

Hold
If the far end of the activeCall is a local extension on hold, then
cstaConsultationCall() returns GENERIC_UNSPECIFIED and activeCall is
cleared at the consulting extension.

Idle Time-outs
If the calledDevice is not plugged in, the consulting user will hear busy tone and
the activeCall (that is now on hold) remains on hold. After the time-out occurs
and the consulting user’s extension transitions to off-hook idle, an application may
use cstaRetrieveCall() to retrieve the activeCall from the held state. Note that
the application need not wait for the time-out to occur. A user would use the
cstaClearConnection() (via the application) to clear the busy connection at the
consulting device and then use cstaRetrieveCall() to retrieve the activeCall
from the held state.

Listed Directory Number (LDN)
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot be the LDN.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice parameter in a
cstaConsultationCall() request can be the LDN.

Modem Pool
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot be a Modem Pool.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice parameter in a
cstaConsultationCall() request can be a Modem Pool.

Networking
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot be the extension number of a station on
another switch in the private network. If an application attempts to make a
consultation call to a station on another switch in the private network, the csta-
ConsultationCall() request will be denied.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice parameter in a
cstaConsultationCall() request can be the extension number of a station on
another switch in the private network.

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-43

One-Touch Transfer with Manual Completion
Attempting the cstaConsultationCall() service request is the same as invoking
One-Touch Transfer with Manual Completion. The type of button selected is
dependent on the type of transfer (i.e. automatic completion). Refer to the
MERLIN LEGEND Advanced Communications System Feature Reference or
MERLIN MAGIX Integrated System Feature Reference for further information.

Paging
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot be a paging zone.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice parameter in a
cstaConsultationCall() request can be a paging zone.

Park
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot be a park zone.

Beginning with MERLIN MAGIX Release 1.5, the calledDevice parameter in a
cstaConsultationCall() request can be a park zone.

Since an extension cannot consult to itself, an application cannot use
cstaConsultationCall() to park a call (an application may not use
cstaConsultationCall() to transfer a call to itself).

Pool Codes
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release1.0)
environment, the calledDevice parameter in a cstaConsultationCall() request
must be a local extension, so it cannot contain a pool dialout code (e.g. 70).

Beginning with MERLIN MAGIX Release 1.5, the calledDevice parameter in a
cstaConsultationCall() request can contain a pool dialout code.

Redial
If the cstaConsultationCall() service originates a call, then the calledDevice
becomes the Redial number.

Remote Call Forwarding
The cstaConsultationCall() service is successful whether or not the
calledDevice has Remote Call Forwarding (delayed or undelayed) enabled.

Restrictions
The restrictions for a station still apply when the cstaConsultationCall() service
is used.

Call Control Services

4-44 Issue 2.2 Programmer’s Guide

Save Number Dialed
The user at the extension originating the cstaConsultationCall() service may
invoke Save Number Dialed and the MERLIN LEGEND or MERLIN MAGIX
switch will retain the number in the calledDevice as the Saved Number Dialed.

Senderization
The cstaConsultationCall() service will not be successful if activeCall is
Senderized. Senderization does not correspond to End-Of-Dialing or to a talking
phase. Typically senderization stops before or during End-of-Dialing, but this is
not guaranteed (for example during ARS digit absorption). This interaction is
equivalent to the Transfer With Manual Completion feature operation.

Service Observing
An application may use cstaConsultationCall() to make a consultation call at a
station that is being observed.

The cstaConsultationCall() service will fail when activeCall specifies an
observed call at the station for a service observer.

Shared System Access Buttons
The cstaConsultationCall() service will fail when activeCall appears on a
Shared System Access button.

Single Line Sets
Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaConsultationCall() to make a consultation call on behalf of a Single Line
Set.

Prior to MERLIN MAGIX Release 2.0, the switch will deny a request to make a
consultation call at a Single Line Set.

System Access Ring/Voice Option
The consultation call resulting from an invocation of cstaConsultationCall() may
be either a ring consultation or a voice announce consultation. The result
depends on the administration and operation of the One-Touch Transfer With
Manual Completion feature.

Transfer
See the feature interaction for One-Touch Transfer With Manual Completion.

cstaConsultationCall()

Programmer’s Guide Issue 2.2 4-45

Voice Announce
When a consultation call arrives at an extension with Voice Announce, the
arriving call is answered on speaker and there is no CSTADeliveredEvent for the
arriving call. There is a CSTAEstablishedEvent. When a transfer or conference
operation joins the consultation call with the held call, the Voice Announce call
clears (monitoring applications will see CSTAConnectionClearedEvents) and
the newly joined call alerts at the consultation destination. Monitors will receive a
CSTADeliveredEvent for the newly alerting call. The connection identifier for the
call may contain a call identifier that is different than that of the call answered on
Voice Announce.

Chapter 12 contains an sample event flow for a Voice Announce scenario.

Call Control Services

4-46 Issue 2.2 Programmer’s Guide

cstaDeflectCall()

This service is supported beginning with MERLIN MAGIX Release 2.0.

The cstaDeflectCall() service redirects an unanswered Calling Group call from
one device to another. The call must be a Calling Group call alerting at an agent,
at a Delay Announcement Unit, or in a Calling Group queue. In a MERLIN
MAGIX Release 2.0 environment the call may be deflected to another Logged In
agent or to a Calling Group queue. Beginning with MERLIN MAGIX Release 2.1,
these restrictions are lifted and an application may deflect a call to any non-QCC
station that is in normal call handling mode and has an available System Access
button. A call may be deflected more than one time.

The call may be in the queue for any reason (e.g., a call was made directly to the
calling group, or the call was queued as a result of Call Coverage). DGC calls
alerting at an extension are eligible for the cstaDeflectCall() service. Non-DGC
calls for a Calling Group agent (i.e., the called number was the agent’s extension)
are not eligible for the cstaDeflectCall() service.

An alerting DGC call may be deflected to a queue that has no members.

If the call is routed off the local MERLIN MAGIX switch, there will be no events for
the call, as event reporting services are not available for non-local extensions.

The MERLIN MAGIX switch supports four possible scenarios for the
cstaDeflectCall() service:

1. Deflecting a Call From One Calling Group Queue To Another.

An alerting call in a Calling Group Queue may be redirected to another
Calling Group. When the cstaDeflectCall() service is used, the call is
removed from the original queue and placed at the end of the destination
queue. Once redirected, the call is treated as if had originally come into the
destination queue. The SMDR record will show the redirected queue and not
the original queue. The call will now follow the rules for the new Calling
Group.

2. Deflecting a Call From a Calling Group Queue To a Station

An alerting call in a Calling Group Queue may be redirected to a station. For
MERLIN MAGIX Release 2.0, the destination station must be available to
receive a DGC call (i.e., logged in and idle), though the station does not need
to be a member of a Calling Group.

Beginning with MERLIN MAGIX Release 2.1, these restrictions are lifted and
an application is able to deflect a call to any non-QCC station that is in normal
call handling mode and has an available System Access button.

cstaDeflectCall()

Programmer’s Guide Issue 2.2 4-47

When the cstaDeflectCall() service is used, the call is removed from the
queue and begins to alert on a System Access button at the destination
station. The call continues to ring until it is answered, deflected, or until the
far end disconnects. The call appears as an ordinary DGC call; the station
display provides the same feedback as if the station were a member of the
Calling Group. Any DGC information in the SMDR record will report the last
group where the call was queued.

3. Deflecting a Call From One Station To Another

An alerting DGC call at a station may be deflected to another station. In
MERLIN MAGIX Release 2.0 the destination station must be available to
receive a DGC call (i.e., logged in and idle), though the station does not need
to be a member of a Calling Group.

Beginning with MERLIN MAGIX Release 2.1, these restrictions are lifted and
an application is able to deflect a call to any non-QCC station that is in normal
call handling mode and has an available System Access button.

When the cstaDeflectCall() service is used, the call is removed from the
station where it is alerting and begins to alert on a System Access button at
the destination station. The call appears as an ordinary DGC call; the
destination station display provides the same feedback as if the station were
a member of the last Calling Group where the call was queued. Any DGC
information in the SMDR record will report the last group where the call was
queued.

4. Deflecting a Call From Station To a Calling Group Queue

An alerting DGC call at a station may be redirected to a Calling Group
Queue. When the cstaDeflectCall() service is used, the call is removed from
the station where it is alerting and placed at the end of the destination queue.
Once redirected, the call is treated as if had originally come into the
destination queue. The SMDR record will show the redirected queue and not
the original queue. The call will now follow the rules for the new Calling
Group.

Call Control Services

4-48 Issue 2.2 Programmer’s Guide

Service Request Parameters

Table 4-16. cstaDeflectCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

deflectCall alerting connection to be redirected. Must contain
DeviceID and CallID

calledDevice destination device. This must be a local extension or
calling group queue

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-5 illustrates a cstaDeflectCall() scenario where deflectCall is the
connection D1C1 and calledDevice is the device D3.

Before After

D1 D2 C1

c a, q

D3

D1 D2 C1

c

a, q
D3

Figure 4-5. cstaDeflectCall() Scenarios

cstaDeflectCall()

Programmer’s Guide Issue 2.2 4-49

Return Values

Table 4-17. cstaDeflectCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event -
CSTADeflectCallConfEvent

A CSTADeflectCallConfEvent indicates that the deflectCall connection has
been redirected to calledDevice.

Table 4-18. CSTADeflectCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_DEFLECT_CALL_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the deflectCall connection cannot be redirected to calledDevice, or
calledDevice is not eligible to receive the call, the MERLIN MAGIX switch returns
one of the errors below. For all error values except GENERIC_UNSPECIFIED,
the MERLIN MAGIX switch leaves the deflectCall in the state that it was in
before the switch processed the cstaDeflectCall() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaDeflectCall() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the deflectCall connection could not be redirected to calledDevice
for some reason other than the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

Call Control Services

4-50 Issue 2.2 Programmer’s Guide

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
deflectCall is not valid. Some possible reasons are:

n There is no callID in deflectCall.

n The callID in deflectCall does not exist in the MERLIN MAGIX switch.

n The callID in deflectCall is not present at the deviceID in deflectCall.

n The deviceID in deflectCall is not a local extension or Calling Group.

n The deviceID in deflectCall is configured as a QCC.

n The application supplied a dynamic device identifier (the MERLIN
MAGIX switch does not use dynamic device identifiers).

INVALID_CALLED_DEVICE – The deviceID in calledDevice is invalid. This may
be because:

n The calledDevice is an SSA or Calling Group queue.

n The calledDevice is a QCC or LDN.

n The calledDevice is the same as the deviceID in deflectCall.

INVALID_OBJECT_STATE – The callID in deflectCall is not a Group Calling call
alerting at the specific deviceID in deflectCall.

GENERIC_STATE_INCOMPATABILITY – The calledDevice is a valid extension
number, but it is not in the proper state to receive a DGC call (i.e., the
extension must be on-hook, logged-in, responding mode, etc.). See the
MERLIN MAGIX Integrated System Feature Reference for the complete list
of conditions that block DGC calls.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaDeflectCall() exceeds the maximum number of outstanding requests
permitted at either the PBX driver or the switch.

RESOURCE_BUSY – A needed resource is busy. Possible causes include:

n The switch is processing another TSAPI request for the extension in
deflectCall. Services such as cstaMakeCall() and cstaConsultation-
Call() may be in progress when a cstaDeflectCall() request arrives.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

cstaDeflectCall()

Programmer’s Guide Issue 2.2 4-51

Request Syntax

cstaDeflectCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *deflectCall, /* INPUT */
 DeviceID_t *calledDevice, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTADeflectCallConfEvent_t deflectCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTADeflectCallConfEvent_t {
 Nulltype null;
} CSTADeflectCallConfEvent_t;

Important Feature Interactions

Bridging
If an application requests the cstaDeflectCall() service for a Bridged call, the
request is denied with CSTA Universal Failure error INVALID_OBJECT_STATE.

Callback Queuing (CBQ)
If an application requests the cstaDeflectCall() service for a Callback Queuing
call, the request is denied with CSTA Universal Failure error INVALID_-
OBJECT_STATE.

Call Control Services

4-52 Issue 2.2 Programmer’s Guide

Calling Information
When a call is deflected to a display station, the information on the station display
reflects the last queue or DGC group that the call was in.

Camp-On Return
If an application requests the cstaDeflectCall() service for a Camp-On return
call, the request is denied with CSTA Universal Failure error INVALID_-
OBJECT_STATE.

Coverage
If an application requests the cstaDeflectCall() service for a call alerting on a
Primary, Secondary or Group Cover button, the request is denied with CSTA
Universal Failure error INVALID_OBJECT_STATE.

The cstaDeflectCall() service is successful for a Coverage Call alerting in a
DGC queue (i.e., if DGC Group Coverage is in use).

Delay Announcement Unit
The cstaDeflectCall() service is successful for a call alerting at a Delay
Announcement Unit or a call that has been answered at the Delay Announcement
Unit. The deviceID component of deflectCall must contain the DGC queue
and not the extension number of the Delay Announcement Unit.

Dial Plan Routing
The cstaDeflectCall() service is successful for a call that has been routed to a
Calling Group via Dial Plan Routing.

Distinctive Ring
A call that is redirected with the cstaDeflectCall() service will receive Distinctive
Ringing treatment.

Group Calling

The cstaDeflectCall() is successful for an alerting DGC call2 (either at a
member or in the queue).

Listed Directory Number (LDN)
A call may be deflected to a DGC group that overflows to the LDN.

Park Return
If an application requests the cstaDeflectCall() service for a Park return call, the
request is denied.

2 This could be an internal, external, networked, night service, QCC backup or coverage call

cstaDeflectCall()

Programmer’s Guide Issue 2.2 4-53

Reminder Service
If an application requests the cstaDeflectCall() service for a Reminder Service
call, the request is denied.

Transfer Return
If an application requests the cstaDeflectCall() service for a transfer return call,
the request is denied.

Call Control Services

4-54 Issue 2.2 Programmer’s Guide

cstaHoldCall()

The cstaHoldCall() service puts the active connection activeCall on hold (not
on hold-for-transfer or hold-for-conference.). The callID specified in the
connection is held at the deviceID. The connection must be in an active state at
the extension.

The MERLIN LEGEND and MERLIN MAGIX switches always reserve the
connection on all of their extension sets. The reservation parameter has no
effect on the cstaHoldCall() processing.

 NOTE:
The MERLIN LEGEND and MERLIN MAGIX switches will tear down a call
when all internal parties on the call have placed that call on hold. If an
application requests cstaHoldCall() when all other parties to that call are
local extensions with the call on hold, the cstaHoldCall() operation will
succeed. The last party added to the call is placed on Hold and the
MERLIN LEGEND or MERLIN MAGIX switch will then tear down the call.
Applications will receive appropriate events as the call is torn down.

cstaHoldCall()

Programmer’s Guide Issue 2.2 4-55

Service Request Parameters

Table 4-19. cstaHoldCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

activeCall active connection. Must contain deviceID and callID

reservation The MERLIN LEGEND and MERLIN MAGIX switches
always reserve the facility for re-use and thus this
parameter has no effect.

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-6 illustrates various cstaHoldCall() scenarios where activeCall is the
connection D1C1.

Before After

D1 D2 C1

c c

D1 D2 C1

h c

D1 D2 C1
c c

D3 c, h

There may also be additional connections D4C1

and D5C1 in the same initial state as D3C1.
External trunk connections must be in state “c”.

D1 D2 C1
h c

D3 c, h

If D4C1 or D5C1 were present, their

connection state is unchanged.

D1 D2 C1

c h

D1 D2

The MERLIN LEGEND and MERLIN MAGIX
switches clear a call when all parties are on
hold, so placing D1C1 on hold causes the

MERLIN LEGEND or MERLIN MAGIX switch
to clear C1.

Figure 4-6. cstaHoldCall() Scenarios

Call Control Services

4-56 Issue 2.2 Programmer’s Guide

Return Values

Table 4-20. cstaHoldCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event - CSTAHoldCallConfEvent

A CSTAHoldCallConfEvent indicates that the activeCall connection has been
placed on hold.

Table 4-21. CSTAHoldCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_HOLD_CALL_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the activeCall connection cannot be held, the MERLIN LEGEND or MERLIN
MAGIX switch returns one of the errors below. For all error values except
GENERIC_UNSPECIFIED, the MERLIN LEGEND and MERLIN MAGIX switches
leave the activeCall connection in the state that it was in before the switch
processed the cstaHoldCall() request. GENERIC_UNSPECIFIED will, in most
instances, also leave the activeCall connection in its initial state, but there are a
few circumstances where this cannot be guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaHoldCall() request, the CSTAUniversalFailureConfEvent will contain
one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

cstaHoldCall()

Programmer’s Guide Issue 2.2 4-57

n activeCall specifies an active connection at a 4400D station, but there
is already a call on hold, hold-for-conference or hold-for-transfer at that
station

n callID in activeCall is not present on a supported button type at the
deviceID in activeCall.

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

n activeCall specifies a screened call at the station of a Call Screener.

n activeCall specifies an observed call at the station of a Service
Observer.

n The activeCall connection could not be held for some reason other than
the more specific reasons listed below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
activeCall is not valid. Some possible reasons are:

n No callID in activeCall.

n The callID in activeCall does not exist in the MERLIN LEGEND or
MERLIN MAGIX switch.

n callID in activeCall is not present at the deviceID in activeCall.

n Invalid deviceID in activeCall. One of the following may have occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

n The deviceID in activeCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

INVALID_OBJECT_STATE – The activeCall connection is a valid connection
identifier (the call is present at the extension) and one of the following
conditions occurred:

n The callID in activeCall is present at the deviceID in activeCall, but it is
not in the active state.

n The deviceID in activeCall is active on another call.

n The deviceID in activeCall is Responding, but is not in Normal Mode.

Call Control Services

4-58 Issue 2.2 Programmer’s Guide

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the cstaHoldCall()
exceeds the maximum number of outstanding requests permitted at either
the driver or the switch.

RESOURCE_BUSY – A needed resource is busy. Possible causes include:

n The switch is processing another TSAPI request for the extension in
activeCall. Services such as cstaMakeCall() and
cstaConsultationCall() may be in progress when a cstaHoldCall()
request arrives.

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND or MERLIN MAGIX
PBX driver sent the request to the switch, but did not receive a response
within the allotted time. This is usually an indication that there is a problem
with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver, or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaHoldCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *activeCall, /* INPUT */
 Boolean reservation, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

cstaHoldCall()

Programmer’s Guide Issue 2.2 4-59

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAHoldCallConfEvent_t holdCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAHoldCallConfEvent_t {
 Nulltype null;
} CSTAHoldCallConfEvent_t;

Important Feature Interactions

4400D Hold
The Hold button on the 4400D sets acts differently than any other set in the
system. The first press of the Hold button on an active call places the call on
Hold; a second press of the Hold button retrieves the held call. While a call is on
hold, the user may make another call (after a switch-hook depression). If an
application requests the cstaHoldCall() service for an active call at a 4400D set
while another call is already on hold, the request is denied.

Call Screening
An application may use the cstaHoldCall() service to place a call on hold at a
station that is participating in a screened call.

The cstaHoldCall() service will fail when activeCall specifies a screened call at
the station of a Call Screener.

Conference
The cstaHoldCall() service places a call on hold, not hold-for-conference.

Call Control Services

4-60 Issue 2.2 Programmer’s Guide

Prior to MERLIN MAGIX Release 2.0, the cstaHoldCall() service will place a
conference call on hold if the last party added to conference was added on an SA
button.

Beginning with MERLIN MAGIX Release 2.0, the cstaHoldCall() service will
place a conference call on hold only if the last party added to conference was
added on a supported button type.

Coverage
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaHoldCall() to hold a call
on a Primary, Secondary or Group Coverage button.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaHoldCall() to hold a call on a Primary, Secondary or Group Coverage
button.

Direct Facility Termination and Direct Pool
Termination (DFT/DPT)

In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaHoldCall() to hold a call
on a DFT or DPT button.

Beginning with MERLIN MAGIX Release 2.0, an application may use
cstaHoldCall() to hold a call on a DFT or DPT button.

End-Of-Dialing (Loop and Ground Start Trunks)
When an incoming call arrives on a Loop or Ground Start trunk, the users may be
able to talk before the switch timers transition the trunk connection to End-of-
Dialing. If an application requests cstaHoldCall() before the transition to End-of-
Dialing on this connection, the request will fail.

Intercom - Voice Announce
The cstaHoldCall() service can hold a call that arrived as a Voice Announce
Call.

Service Observing
An application may use the cstaHoldCall() service to hold a call at a station that
is being observed. When the call goes on hold, a monitor for the Service
Obersever will receive a CSTAConnectionClearedEvent with a cause of
EC_SILENT_MONITOR.

The cstaHoldCall() service will fail when activeCall specifies an observed call at
the station for a Service Observer.

cstaHoldCall()

Programmer’s Guide Issue 2.2 4-61

Shared System Access Buttons
If an application requests the cstaHoldCall() service for a call on a Shared
System Access button, the request is denied.

Single Line Set
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaHoldCall() to hold a call
appearing on a Single Line Set.

Beginning with MERLIN MAGIX Release 2.0, an application may use the
cstaHoldCall() service to hold a call appearing on a Single Line Set.

Transfer
The cstaHoldCall() service places a call on regular hold, not hold-for-transfer.

Call Control Services

4-62 Issue 2.2 Programmer’s Guide

cstaMakeCall()

The cstaMakeCall service places a call from the callingDevice to the
calledDevice. The confirmation event gives the connection identifier of the newly
placed call at the callingDevice.

The destination may be a local extension or external number. The calledDevice
may contain a facilities indicator (such as “9” or a pool access code).

The callingDevice, the originating extension, must be an internal MLX, ETR,
4400-series or ATL extension with an available SA button. The originating
extension must be in Normal, Responding Mode.

The originating user must be either:

n off-hook on an SA button listening to dial tone

n off-hook on an SA button in the middle of dialing. (The calledDevice digits
are inserted into the dialing at this point.)

n off-hook idle (no red LED appears on the extension)

n on-hook with an SA button available

If the switch can take the callingDevice’s speakerphone off-hook and place the
call, it will do so. If the calling extension is not already off-hook and drawing dial
tone, and if the calling extension is in a suitable state for initiating a call, the
switch will make the call. If the switch cannot take the extension’s speakerphone
off-hook, and the extension is not in a suitable off-hook state for placing the call,
then the switch will deny the request.

The MERLIN LEGEND and MERLIN MAGIX switches do not support
authorization or account code entry for the cstaMakeCall() service. Thus, the
cstaMakeCall() service will fail when callingDevice is administered for forced
account code entry.

The calledDevice parameter may contain digits 0-9, *, and #. The MERLIN
LEGEND and MERLIN MAGIX switches will ignore any alphabetic or pause
characters. The MERLIN LEGEND and MERLIN MAGIX switches will dial all
requested digits; if the requested digits do not form a valid number, then the user
will hear reorder or an appropriate tone.

cstaMakeCall()

Programmer’s Guide Issue 2.2 4-63

Service Request Parameters

Table 4-22. cstaMakeCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

callingDevice originating extension

calledDevice number to dial

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-7 illustrates a cstaMakeCall() scenario.

Before After

D1 D2

D1 D2 C1

i

Figure 4-7. cstaMakeCall() Scenario

Call Control Services

4-64 Issue 2.2 Programmer’s Guide

Return Values

Table 4-23. cstaMakeCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event - CSTAMakeCallConfEvent

The MERLIN LEGEND or MERLIN MAGIX switch sends the
CSTAMakeCallConfEvent after the call is originated and switch call processing
progresses to the point that the switch allocates the connectionID for the new call.
Call origination does not mean that the newly originated call has alerted at the
destination. Resulting event reports (CSTADeliveredEvent,
CSTANetworkReachedEvent) will indicate alerting at the called extension or
trunk seizure.

cstaMakeCall()

Programmer’s Guide Issue 2.2 4-65

The deviceID in the newCall parameter in the confirmation event is the deviceID
from the callingDevice request parameter.

Table 4-24. CSTAMakeCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_MAKE_CALL_CONF

invokeID identifies service request within stream

newCall connectionID (containing both deviceID and callID) for the
originated call at the callingDevice

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the MERLIN LEGEND or MERLIN MAGIX switch cannot originate the call, then
the MERLIN LEGEND or MERLIN MAGIX switch returns one of the errors below.
For all error values except GENERIC_UNSPECIFIED, the MERLIN LEGEND and
MERLIN MAGIX switches leave all connections at callingDevice in the states
that they were in before the switch processed the cstaMakeCall() request.
GENERIC_UNSPECIFIED will, in most instances, also leave the connections in
their initial state, but there are a few circumstances where this cannot be
guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaMakeCall() request, the CSTAUniversalFailureConfEvent will contain
one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the call could not be originated for some reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CALLING_DEVICE – The callingDevice is invalid. This may be
because:

n The deviceID in callingDevice is not a valid extension in the dial plan.

n callingDevice is not a supported extension set type in Responding
Mode. (The extension may be out of service.)

n callingDevice is unknown or has a null value.

n callingDevice is configured as a QCC.

n callingDevice does not have an SA button available to originate the
call.

Call Control Services

4-66 Issue 2.2 Programmer’s Guide

INVALID_CALLED_DEVICE – The deviceID in calledDevice is invalid. This may
be because:

n The deviceID in calledDevice specifies the same device as the
deviceID in callingDevice. (An extension cannot place a call to itself.)

INVALID_OBJECT_STATE – One of the following conditions occurred:

n callingDevice is active on another call (cannot originate a call while
active on another call).

n callingDevice is not in a suitable initial state. A suitable initial state is:

 off-hook on an SA button and hearing dial tone or in the midst of
dialing.

 off-hook on an SA button and dial tone has timed out, which results
in the user becoming aware of silence. This is sometimes termed
“high & dry”.

 on hook (the switch can force the speaker off hook.)

n callingDevice is Responding, but is not in Normal Mode.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the cstaMakeCall()
exceeds the maximum number of outstanding requests permitted at either
the driver or the switch.

RESOURCE_BUSY – A needed resource is busy. Possible causes include:

n The switch is processing another CTI request for the extension in
callingDevice. Services such as cstaMakeCall() (perhaps from
another application) and cstaConsultationCall() may be in progress
when a cstaMakeCall() request arrives.

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver sent the request to the switch, but did not
receive a response within the allotted time. This is usually an indication that
there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaMakeCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *callingDevice, /* INPUT */
 DeviceID_t *calledDevice, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

cstaMakeCall()

Programmer’s Guide Issue 2.2 4-67

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAMakeCallConfEvent_t makeCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAMakeCallConfEvent_t {
 ConnectionID_t newCall;
} CSTAMakeCallConfEvent_t;

Important Feature Interactions

Auto Dial
The cstaMakeCall() service will not preempt the processing of a pending Auto
Dial.

Automatic Line Selection (ALS)
If the originating extension is off-hook or if the red LED is lit at an SA button, then
cstaMakeCall() originates the call from that button.

Bridged Appearances
The cstaMakeCall() service will not originate a call on a bridged appearance
(SSA, DFT, etc.). The cstaMakeCall() service will originate only on System
Access Voice, System Access Ring, or System Access Originate Only buttons.

Group Page
The calledDevice may be a Group Page extension.

The cstaMakeCall() service will not originate a call from a member of a group
page that is active on a page call.

Call Control Services

4-68 Issue 2.2 Programmer’s Guide

Redial
The calledDevice from a cstaMakeCall() is retained as the Redial number.

Restrictions
The cstaMakeCall() service will honor any restrictions administered for the
originating and destination extensions. If the originating extension is toll restricted
and the calledDevice is a toll number, the MERLIN LEGEND or MERLIN MAGIX
switch will not originate the call.

Save Number Dial
The calledDevice from a cstaMakeCall() may be retained as the Save Number
Dialed.

Service Observing
An application may use cstaMakeCall() to make a call at a station that is being
observed.

An observer may activate Service Observing by pressing the Service Observing
button on the station and then invoking the cstaMakeCall() service with
callingDevice set to the extension number of the service observer and
calledDevice set to the extension number of the station being observed.

cstaRetrieveCall()

Programmer’s Guide Issue 2.2 4-69

cstaRetrieveCall()

The cstaRetrieveCall() service retrieves a held, held-for-transfer, or held-for-
conference connection heldCall at an extension. cstaRetrieveCall() will not
retrieve an associative held connection. Specifically, the heldCall’s callID is
retrieved at the heldCall’s deviceID. The heldCall connection must be in a held
state at the extension. The cstaRetrieveCall() service will not drop another
connection to retrieve a call. Thus, the retrieving extension cannot be active on
another call for cstaRetrieveCall() to be successful.

Service Request Parameters

Table 4-25. cstaRetrieveCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

heldCall held connection containing both deviceID and callID

privateData NULL, not used for this service request

Scenario Diagram

Figure 4-8 illustrates various cstaRetrieveCall() scenarios where heldCall is the
connection D1C1.

Before After

D1 D2 C1

c h, ht, hc

D1 D2 C1

c c

D1 D2 C1
h, ht, hc c

D3 c, h

There may also be additional connections D4C1

and D5C1 in the same initial state as D3C1

D1 D2 C1
c c

D3 c, h

If D4C1 or D5C1 were present, their

connection state is unchanged.

Figure 4-8. cstaRetrieveCall() Scenarios

Call Control Services

4-70 Issue 2.2 Programmer’s Guide

Return Values

Table 4-26. cstaRetrieveCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event -
CSTARetrieveCallConfEvent

A CSTARetrieveCallConfEvent indicates that the switch has accepted the
request, validated the parameters, and signaled the extension to retrieve the call.
Application(s) monitoring the extension will receive a CSTARetrievedEvent when
the connection has been retrieved.

Table 4-27. CSTARetrieveCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_RETRIEVE_CALL_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the heldCall connection cannot be retrieved, the MERLIN LEGEND or MERLIN
MAGIX switch returns one of the errors below. For all error values except
GENERIC_UNSPECIFIED, the MERLIN LEGEND and MERLIN MAGIX switches
leave the heldCall connection in the state that it was in before the switch
processed the cstaRetrieveCall() request. GENERIC_UNSPECIFIED will, in
most instances, also leave the connections in their initial state, but there are a few
circumstances where this cannot be guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaRetrieveCall() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

cstaRetrieveCall()

Programmer’s Guide Issue 2.2 4-71

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

n callID in heldCall is not present on a supported button type at the
deviceID in heldCall.

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

n The heldCall specifies an observed call at the station of a service
observer.

n The heldCall connection could not be retrieved for some reason other
than the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
heldCall is not valid. Some possible reasons are:

n No callID in heldCall.

n The callID in heldCall does not exist in the MERLIN LEGEND or
MERLIN MAGIX switch.

n callID in heldCall is not present at the deviceID in heldCall.

n Invalid deviceID in heldCall. One of the following may have occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

n The deviceID in heldCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

INVALID_OBJECT_STATE – The heldCall connection is a valid connection
identifier (the call is present at the extension) and one of the following
conditions occurred:

n heldCall is not in the held state.

n The deviceID in heldCall is active on another call.

n The deviceID in heldCall is Responding, but is not in Normal Mode.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaRetrieveCall() exceeds the maximum number of outstanding requests
permitted at either the driver or the switch.

Call Control Services

4-72 Issue 2.2 Programmer’s Guide

RESOURCE_BUSY – A needed resource is busy. Possible causes include:

n The switch is processing another TSAPI request for the extension in
heldCall. Services such as cstaMakeCall() and
cstaConsultationCall() may be in progress when a
cstaRetrieveCall() request arrives.

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver sent the request to the switch, but did not
receive a response within the allotted time. This is usually an indication that
there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

Request Syntax

cstaRetrieveCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *heldCall, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTARetrieveCallConfEvent_t retrieveCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTARetrieveCallConfEvent_t {
 Nulltype null;
} CSTARetrieveCallConfEvent_t;

cstaRetrieveCall()

Programmer’s Guide Issue 2.2 4-73

Important Feature Interactions

Call Screening
An application may use the cstaRetrieveCall() service to retrieve a held call at a
station that is participating in a screened call.

Callback Queuing (CBQ)
If a user has invoked the Callback Queuing feature for a call and then either hung
up or post-selected away from that call, then the call is in associative hold. An
application may not use cstaRetrieveCall() to retrieve a call on associative hold,
including a CBQ call.

Conference
Prior to MERLIN MAGIX Release 2.0, the cstaRetrieveCall() service will
connect to a held conference call so long as the conference call appears on at
least one SA button at the extension.

Beginning with MERLIN MAGIX Release 2.0, the cstaRetrieveCall() service will
connect to a held-for-conference call as long as the conference call appears on at
least one supported button type at the extension.

Coverage
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaRetrieveCall() to retrieve
a held call on a Primary, Secondary or Group Coverage button.

Beginning with MERLIN MAGIX Release 2.0, an application may use the
cstaRetrieveCall() service to retrieve a held call on a call on a Primary,
Secondary or Group Coverage button.

Direct Facility Termination and Direct Pool
Termination (DFT/DPT)

In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaRetrieveCall() to retrieve
a held call on a DFT or DPT button.

Beginning with MERLIN MAGIX Release 2.0, an application may use csta-
RetrieveCall() to retrieve a held call on a call on a DFT or DPT button.

Service Observing
An application may use the cstaRetrieveCall() service to retrieve a call at a
station that is being observed.

Call Control Services

4-74 Issue 2.2 Programmer’s Guide

Shared System Access Buttons
If an application requests the cstaRetrieveCall() service for a held call on a
Shared System Access button, the request is denied.

Single Line Set
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not use cstaRetrieveCall() to retrieve
a held call at a Single Line Set.

Beginning with MERLIN MAGIX Release 2.0, an application may use csta-
RetrieveCall() to retrieve a held call on a supported button type at a Single Line
Set.

Transfer
An application may use cstaRetrieveCall() to connect to a call that is on-hold-
for-transfer. The request will be successful whether or not the call is ringing at
the transfer destination.

cstaTransferCall()

Programmer’s Guide Issue 2.2 4-75

cstaTransferCall()

The cstaTransferCall() service transfers a held connection heldCall to an active
connection activeCall at a common extension. The deviceID in the heldCall and
activeCall must specify the common extension.

The heldCall must be on hold-for-transfer. The cstaTransferCall() service will
fail otherwise.

Prior to MERLIN MAGIX Release 2.0, the cstaTransferCall() service will fail if
the activeCall is a call to an external party.

An application may request the cstaTransferCall() service after a successful
invocation of the cstaConsultationCall() service and thereby transfer the held
call (held by cstaConsultationCall()) with the consultation call (originated by
cstaConsultationCall()).

The MERLIN LEGEND and MERLIN MAGIX switches will deny an application
request to transfer a held call after successful execution of cstaHoldCall() and
cstaMakeCall() since the cstaHoldCall() will not put the call on hold-for-
transfer.

 NOTE:
On a MERLIN LEGEND or MERLIN MAGIX switch, a transferred call may,
or may not, remain at the transferring party. Whether or not the call
remains at the transferring party depends on such factors as whether the
transfer destination answers. The application should not infer from a
successful transfer request that the call no longer appears at the
transferring extension. In some situations, the application will receive a
CSTATransferredEvent and then the call can still appear at or return to
the transferring extension. The application will receive a
CSTADeliveredEvent if the call returns and alerts.

The MERLIN LEGEND and MERLIN MAGIX switches will permit the interleaving
of manual and CTI operations to effect a transfer as follows:

n Prerequisite: The user has an active connection and the application has a
connectionID for that connection. This may occur when:

 the user manually answers an incoming call (application has
connectionID from Delivered and Established events),

 the application uses cstaAnswerCall() to answer an incoming call,

 the application uses cstaMakeCall() to make a call, or

 the user manually places a call to another extension.

n the user manually presses TRANSFER button. The previously active
connection is now on hold-for-transfer.

Call Control Services

4-76 Issue 2.2 Programmer’s Guide

n The transferring user becomes connected on a second call either through
using cstaMakeCall() to make a call, or by answering an incoming call
(manually or using cstaAnswerCall()). The application now has the
connectionIDs for the active call and the held call.

n the application makes a cstaTransferCall() request giving the
connectionIDs for the held and active calls.

If the transfer cannot be done, then the switch leaves the heldCall and activeCall
connections in the states that they were in before the switch began processing
the cstaTransferCall() call request.

Service Request Parameters

Table 4-28. cstaTransferCall() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

heldCall held connection. Must contain deviceID and callID

activeCall active connection. Must contain deviceID and callID

privateData NULL, not used for this service request

cstaTransferCall()

Programmer’s Guide Issue 2.2 4-77

Scenario Diagram

Figure 4-9 illustrates various cstaTransferCall() scenarios where heldCall is the
connection D1C1 and activeCall is the connection D1C2.

Before After

c

D1 D2 C1
ht c

D3
a,c,h C2

“c” at D3C2 cannot be from voice announce or auto-

answer consultation.

D1 D2 c

D3 a,c,h C2

c

D1 D2 C1
ht c

D3
a,c,h C2

 “c” at D3C2 from voice announce or auto-answer

consultation

D1 D2 c

D3
a,c,h C2

h

Figure 4-9. cstaTransferCall() Scenarios

Return Values

Table 4-29. cstaTransferCall() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted.

Confirmation Event -
CSTATransferCallConfEvent

For a MERLIN LEGEND or MERLIN MAGIX switch, the call ID in the newCall will
be the callID from the activeCall. The application designer should not, however,
use this fact in designing an application. As the switch supports more types of
extensions and calls in the future, this may not continue to be the case.

Call Control Services

4-78 Issue 2.2 Programmer’s Guide

The CSTATransferCallConfEvent indicates that the switch has accepted the
request, validated the parameters, performed necessary call processing, and
signaled the extension to transfer the call. Application(s) monitoring the extension
will receive a CSTATransferredEvent when the transfer occurs.

Table 4-30. CSTATransferCallConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_TRANSFER_CALL_CONF

invokeID identifies service request within stream

newCall connectionID containing DeviceID and CallID of the
resulting call at the transfer destination

connList The MERLIN LEGEND and MERLIN MAGIX switches do
not provide this optional TSAPI parameter. In the
ConnectionList_t structure, count is set to zero and
the connection pointer is set to NULL.

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

If the activeCall and heldCall cannot be transferred, the MERLIN LEGEND or
MERLIN MAGIX switch returns one of the errors below. For all error values
except GENERIC_UNSPECIFIED, the MERLIN LEGEND and MERLIN MAGIX
switches leave the activeCall and heldCall connections in the state that they
were in before the switch processed the cstaTransferCall() request.
GENERIC_UNSPECIFIED will, in most instances, also leave the connections in
their initial state, but there are a few circumstances where this cannot be
guaranteed.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaTransferCall() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when:

n activeCall is Senderized.

n activeCall is in a DGC queue.

n activeCall is a conference call and the device in the activeCall
connection is not the conference controller.

n callID in activeCall or heldCall is not present on a supported button
type at the extension.

cstaTransferCall()

Programmer’s Guide Issue 2.2 4-79

 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), only SA buttons are supported; SSA,
Coverage, Line and Pool buttons are not supported.

 Beginning with MERLIN MAGIX Release 2.0, SA, Coverage, Line
and Pool buttons are supported; only SSA buttons are not
supported.

n Either the activeCall or heldCall specifies an observed call at the
station of a service observer.

n The activeCall and heldCall connections could not be transferred for
some reason other than the more specific reasons given below.

GENERIC_OPERATION – The deviceIDs in activeCall and heldCall are not
identical. (They must be identical since the transfer must occur at an
extension common to the two calls.)

INVALID_CSTA_CONNECTION_IDENTIFIER – The connection identifier
activeCall or heldCall is not valid. Some possible reasons are:

n No callID in activeCall or heldCall.

n The callID in activeCall or heldCall does not exist in the MERLIN
LEGEND or MERLIN MAGIX switch.

n the callID in activeCall is not present at the deviceID in activeCall.

n the callID in heldCall is not present at the deviceID in heldCall.

n Invalid deviceID in activeCall or heldCall. One of the following may have
occurred:

 deviceID is unknown or has a null value.

 deviceID is configured as a QCC.

n The deviceID in activeCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The deviceID in heldCall is not a supported extension set type in
Responding Mode. (The extension may be out of service.)

n The application supplied a dynamic device identifier (the MERLIN
LEGEND and MERLIN MAGIX switches do not use dynamic device
identifiers).

INVALID_OBJECT_STATE – The activeCall and heldCall connections are valid
connection identifiers (the call is present at the extension) and one of the
following conditions occurred:

n The callID in activeCall is present at the deviceID in activeCall, but the
connection is not the active connection at the extension. It is on hold or
in some other state.

n The deviceID in activeCall is Responding, but is not in Normal Mode.

Call Control Services

4-80 Issue 2.2 Programmer’s Guide

n The callID in heldCall is present at the deviceID in heldCall, but the
connection is not held-for-transfer. It is in some other state. This occurs
if the heldCall is on regular hold or hold-for-transfer.

n The deviceID in heldCall is Responding, but is not in Normal Mode.

n The heldCall is a conference call.

n The callID in activeCall is a conference call and the device in
activeCall is the conference controller.

n An attempt was made to transfer to an external party.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaTransferCall() exceeds the maximum number of outstanding requests
permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver sent the request to the switch, but did not
receive a response within the allotted time. This is usually an indication that
there is a problem with the CTI link.

RESOURCE_BUSY – A needed resource is busy. Possible causes include:

n The switch is processing another TSAPI request for the transferring
extension. Services such as cstaMakeCall() and
cstaConsultationCall() may be in progress when a
cstaTransferCall() request arrives.

RESOURCE_LIMITATION_REJECTION - A Telephony Server, MERLIN
LEGEND PBX driver or MERLIN MAGIX PBX driver resource limitation
prevented the system from processing the request.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

Request Syntax

cstaTransferCall (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 ConnectionID_t *heldCall, /* INPUT */
 ConnectionID_t *activeCall, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

cstaTransferCall()

Programmer’s Guide Issue 2.2 4-81

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTATransferCallConfEvent_t transferCall;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTATransferCallConfEvent_t {
 ConnectionID_t newCall;
 ConnectionList_t connList;
} CSTATransferCallConfEvent_t;

Important Feature Interactions

Auto Answer All - AAA (ATL Only – MERLIN
LEGEND and MERLIN MAGIX 1.0)

The cstaTransferCall() service will successfully complete when the transfer
destination uses Auto Answer All to answer the consultation call.

Auto Answer Intercom - AAI (ATL Only –
MERLIN LEGEND and MERLIN MAGIX 1.0)

The cstaTransferCall() service will successfully complete when the transfer
destination uses Auto Answer Intercom to answer the consultation call.

Bridged Appearances (SSA)
The cstaTransferCall() service will successfully transfer a call when the
consultation call is answered at a Shared SA (SSA) button. Note that in this case,
the original transfer destination did not connect to the call. The resulting
CSTATransferredEvent will contain the extension of the extension that bridged
onto the call.

Call Control Services

4-82 Issue 2.2 Programmer’s Guide

Call Screening
An application may use the cstaTransferCall() service to complete a transfer
operation at a station that is partipating in a screened call.

An application may not use the cstaTransferCall() service to complete a transfer
operation at a station that is screening a call.

Call Waiting
Call Waiting may queue the consultation call at the destination and
cstaTransferCall() will successfully complete the transfer.

Callback Queuing (CBQ)
The cstaTransferCall() service will succeed if Callback (Automatic or Selective)
queues the consultation call.

Conference
A user cannot press the conference button, place another call, and then use the
cstaTransferCall() service from an application to complete a transfer.

Coverage
The cstaTransferCall() service will successfully transfer a call where the far end
has the call appearing on a COVER button.

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Release 1.0)
environment, if the activeCall appears on a Primary, Secondary or Group COVER
button at an extension, the cstaTransferCall() service cannot complete a
transfer of that call on behalf of that extension.

Beginning with MERLIN MAGIX Release 2.0, the cstaTransferCall() service will
successfully transfer a call when the activeCall or heldCall is on a Primary,
Secondary or Group COVER button.

Direct Facility Termination/Personal Lines
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, if the activeCall appears only on a DFT button at an
extension, then cstaTransferCall() cannot transfer that call on behalf of that
extension.

Beginning with MERLIN MAGIX 2.0, the cstaTransferCall() will successfully
transfer a call when the activeCall or heldCall is on a DFT button.

Group Calling (DGC)
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, if an application attempts to make a consultation call to a
Calling Group as a means to transfer another call to that Calling Group, the
cstaConsultationCall() request will be denied.

cstaTransferCall()

Programmer’s Guide Issue 2.2 4-83

Beginning with MERLIN MAGIX 1.5, if an application attempts to make a
consultation call to a Calling Group as a means to transfer another call to that
Calling Group, the cstaConsultationCall() request will be granted.

Forward/Follow Me
The cstaTransferCall() service will successfully transfer a call when the
consultation call forwards from the transfer destination to another extension.

Hands Free Answer on Intercom (HFAI)
The cstaTransferCall() service will successfully transfer a call where the far end
used HFAI to connect to the call.

Networking
In a MERLIN LEGEND (Release 6.0 and later) and MERLIN MAGIX (Release
1.0) environment, if an application attempts to make a consultation call as a
means to transfer a call to a station on another MERLIN LEGEND or MERLIN
MAGIX switch in the private network, the cstaConsultationCall() request will be
denied. The user may make the consultation call and transfer the call by using
the station set.

Beginning with MERLIN MAGIX Release 1.5, if an application attempts to make a
consultation call as a means to transfer a call with a station on another MERLIN
LEGEND or MERLIN MAGIX switch in the private network, the csta-
ConsultationCall() request will be granted.

Park
The cstaTransferCall() service cannot be used to park a call by transferring the
call from an extension to itself (in the manner of manual Park operation).

Senderized Operation
The cstaTransferCall() service will fail if activeCall is Senderized (same as
manual transfer completion operation).

Service Observing
An application may use the cstaTransferCall() service to complete a transfer
operation at a station that is being observed.

The cstaTransferCall() service will fail when either the activeCall or the
heldCall specifies an observed call at the station of a service observer; a service
observer may not use the Transfer feature with an observed call.

System Access (SA)/Shared System Access (SSA)
Buttons

The cstaTransferCall() service will successfully transfer a call where the far end
has the call appearing on an SSA button.

Call Control Services

4-84 Issue 2.2 Programmer’s Guide

Transfer
The cstaTransferCall() service operates the same way as transfer completion
(the second press of the TRANSFER button). Refer to the MERLIN LEGEND
Advanced Communication System Feature Reference or MERLIN MAGIX
Integrated System Feature Reference for complete information.

The MERLIN LEGEND or MERLIN MAGIX Transfer Return feature may cause
the activeCall to return to the transferring extension and re-alert. If this occurs,
an application monitoring the transferring extension will receive a
CSTADeliveredEvent.

The activeCall in cstaTransferCall() may not be a conference call since the
MERLIN LEGEND and MERLIN MAGIX switches will not permit the conference
call controller to transfer a conference call.

When an unsupervised transfer is done on a MERLIN LEGEND or MERLIN
MAGIX switch, an appearance of the call remains at the transferring extension
until the transfer destination answers the transferred call. At that time, the
appearance disappears from the transferring extension. The
CSTATransferredEvent does not list the transferring party in its connection list.
An application monitoring the transferring party will not receive a
CSTAConnectionClearedEvent when the transfer destination answers and the
appearance disappears.

Voice Announce
When a consultation call is automatically answered at the speaker, the arriving
call is answered on speaker and there is no CSTADeliveredEvent for the arriving
call. There is a CSTAEstablishedEvent. When a transfer operation joins the
consultation call with the held call, the Voice Announce call clears (monitoring
applications will see CSTAConnectionClearedEvents) and the newly joined call
alerts at the consultation destination. Monitors will receive a
CSTADeliveredEvent for the newly alerting call. The connection identifier for the
call may contain a call identifier that is different than that of the call of the Voice
Announce.

Supplementary Services

Contents

Programmer’s Guide Issue 2.2 5-i

Sending Supplementary Service Requests and
Receiving Confirmations.. 5-2

Supplementary Service Request Failures 5-3
Supplementary Service Page Format ... 5-3

Important Feature Interactions .. 5-4
cstaQueryAgentState() ... 5-5
n Service Request Parameters... 5-6
n Private Service Request Parameters... 5-6
n Return Values .. 5-6
n Confirmation Event - CSTAQueryAgentStateConfEvent............................. 5-7
n CSTA Universal Failure Confirmation Event Errors..................................... 5-7
n Request Syntax.. 5-8
n Confirmation Event Syntax .. 5-9
n Important Feature Interactions... 5-10

Call States ... 5-10
DGC Membership.. 5-10
Extension Status Mode.. 5-10

cstaQueryDoNotDisturb()... 5-11
n Service Request Parameters... 5-11
n Return Values .. 5-11
n Confirmation Event - CSTAQueryDndConfEvent 5-12
n CSTA Universal Failure Confirmation Event Error Values 5-12
n Request Syntax.. 5-13
n Confirmation Event Syntax .. 5-13
n Important Feature Interactions... 5-13

Call States ... 5-13
cstaQueryMsgWaitingInd() .. 5-14
n Service Request Parameters... 5-14
n Return Values .. 5-14
n Confirmation Event - CSTAQueryMwiConfEvent 5-15
n CSTA Universal Failure Confirmation Event Error Values 5-15
n Request Syntax.. 5-16
n Confirmation Event Syntax .. 5-16
n Important Feature Interactions... 5-17

Contents

Programmer’s Guide Issue 2.2 5-ii

Leave Word Calling ... 5-17
Fax Message Waiting .. 5-17
Voice Mail .. 5-17

cstaSetAgentState() ... 5-18
n Service Request Parameters... 5-19
n Return Values .. 5-20
n Confirmation Event - CSTASetAgentStateConfEvent 5-21
n CSTA Universal Failure Confirmation Event Error Values 5-21
n Request Syntax.. 5-22
n Confirmation Event Syntax .. 5-23
n Important Feature Interactions... 5-23

Call States ... 5-23
Calling Group Membership.. 5-23
Extension Status Mode.. 5-23

cstaSetDoNotDisturb() .. 5-24
n Service Request Parameters... 5-24
n Return Values .. 5-24
n Confirmation Event - CSTASetDndConfEvent... 5-25
n CSTA Universal Failure Confirmation Event Error Values 5-25
n Request Syntax.. 5-26
n Confirmation Event Syntax .. 5-26
n Important Feature Interactions... 5-27

Do Not Disturb ... 5-27
Normal, Responding Mode.. 5-27
Station Types... 5-27

cstaSetMsgWaitingInd() .. 5-28
n Service Request Parameters... 5-28
n Return Values .. 5-29
n Confirmation Event - CSTASetMwiConfEvent... 5-29
n CSTA Universal Failure Confirmation Event Error Values 5-29
n Request Syntax.. 5-30
n Confirmation Event Syntax .. 5-30
n Important Feature Interactions... 5-31

Messaging ... 5-31
Normal, Responding Mode.. 5-31
Station Types... 5-31

Supplementary Services

Programmer’s Guide Issue 2.2 5-1

Applications use Supplementary Services to access switch features. MERLIN
MAGIX CTI Supplementary Services allow an application to:

n Set an agent’s login state (MERLIN MAGIX Release 1.5 and later)

n Query the state of an agent (MERLIN MAGIX Release 2.0 and later)

n Change the status of Do Not Disturb feature at an extension (MERLIN
MAGIX Release 2.1 and later)

n Query the Do Not Disturb status of a extension (MERLIN MAGIX Release
2.1 and later)

n Set and clear the Message Waiting Lamp at an extension (MERLIN
MAGIX Release 2.1 and later)

n Query the status of an extension’s Message Waiting Lamp (MERLIN
MAGIX Release 2.1 and later)

Table 5-1 shows the TSAPI Supplementary Services and confirmation events
that the MERLIN MAGIX switch provides.

Table 5-1. MERLIN MAGIX CTI Support for TSAPI Supplementary Services

 TSAPI Supplementary Services and Events -
MERLIN MAGIX Release 1.5

 cstaSetMsgWaitingInd() & CSTASetMwiConfEvent
 cstaSetDoNotDisturb() & CSTASetDndConfEvent
 cstaSetForwarding() & CSTASetFwdConfEvent

√ cstaSetAgentState() & CSTASetAgentStateConfEvent
 cstaQueryMsgWaitingInd() & CSTAQueryMwiConfEvent
 cstaQueryDoNotDisturb() & CSTAQueryDndConfEvent
 cstaQueryFwd() & CSTAQueryFwdConfEvent
 cstaQueryAgentState() & CSTAQueryAgentStateConfEvent
 cstaQueryLastNumber() & CSTAQueryLastNumberConfEvent
 cstaQueryDeviceInfo() & CSTAQueryDeviceInfoConfEvent

Sending Supplementary Service Requests and
Receiving Confirmations

Programmer’s Guide Issue 2.2 5-2

 TSAPI Supplementary Services and Events -
MERLIN MAGIX Release 2.0

 cstaSetMsgWaitingInd() & CSTASetMwiConfEvent
 cstaSetDoNotDisturb() & CSTASetDndConfEvent
 cstaSetForwarding() & CSTASetFwdConfEvent

√ cstaSetAgentState() & CSTASetAgentStateConfEvent
 cstaQueryMsgWaitingInd() & CSTAQueryMwiConfEvent
 cstaQueryDoNotDisturb() & CSTAQueryDndConfEvent
 cstaQueryFwd() & CSTAQueryFwdConfEvent

√ cstaQueryAgentState() & CSTAQueryAgentStateConfEvent
 cstaQueryLastNumber() & CSTAQueryLastNumberConfEvent
 cstaQueryDeviceInfo() & CSTAQueryDeviceInfoConfEvent

 TSAPI Supplementary Services and Events -

MERLIN MAGIX Release 2.1 and later
√ cstaSetMsgWaitingInd() & CSTASetMwiConfEvent
√ cstaSetDoNotDisturb() & CSTASetDndConfEvent
 cstaSetForwarding() & CSTASetFwdConfEvent

√ cstaSetAgentState() & CSTASetAgentStateConfEvent
√ cstaQueryMsgWaitingInd() & CSTAQueryMwiConfEvent
√ cstaQueryDoNotDisturb() & CSTAQueryDndConfEvent
 cstaQueryFwd() & CSTAQueryFwdConfEvent

√ cstaQueryAgentState() & CSTAQueryAgentStateConfEvent
 cstaQueryLastNumber() & CSTAQueryLastNumberConfEvent
 cstaQueryDeviceInfo() & CSTAQueryDeviceInfoConfEvent

! CAUTION:
When designing an application, be aware that the MERLIN MAGIX
switch may not support all of the optional TSAPI supplementary
service parameters. The pages describing each supplementary
service show all of the TSAPI parameters and indicate those that the
MERLIN MAGIX switch supports.

Sending Supplementary Service
Requests and Receiving
Confirmations

Each Supplementary Service request has an associated confirmation event. This
book presents information about each service’s confirmation event under the
heading for the service.

An application must receive the confirmation event on the stream where it sends
the Supplementary Service request. “Receiving Events” in Chapter 3 describes
how applications receive confirmation events.

Supplementary Service Request Failures

Programmer’s Guide Issue 2.2 5-3

In general, it is recommended that an application monitor the extension it is
controlling so that it receives Agent and Feature Status Events reflecting activity
at the extension. Chapter 6 describes the Monitoring Services.

Supplementary Service Request
Failures

If the service request fails for some reason, the application will receive a
CSTAUniversalFailureConfEvent in place of the service confirmation. Each
service description includes a list of the error values that the
CSTAUniversalFailureConfEvent may carry for that service as well as the
meanings of those values in the context of that service. Since the
CSTAUniversalFailureConfEvent applies to other services, as well as
Supplementary Services, its description is found in the section
CSTAUniversalFailureConfEvent in Chapter 3.

Supplementary Service Page Format

The pages describing each TSAPI supplementary service contain the following
sections, as appropriate:

Service Name and Description
The service name appears first. A description of that service immediately follows
the name.

Service Request Parameters

A table lists the service request parameters and summarizes their use.

Return Values

A table lists the return values for the service request.

In all function returns, success values follow the TSAPI rules. If the requesting
application generated the invokeID value, then a successful function call returns
zero. If the TSAPI library generates the invokeID value, then a successful
function call returns the value of the invokeID. This is not explicitly re-stated for
each service. “Sending TSAPI Requests and Receiving Confirmations” in
Chapter 3 describes invokeID usage in more detail.

Confirmation Event
This section names the TSAPI confirmation event for the service and contains a
table describing the confirmation event parameters.

Supplementary Service Page Format

Programmer’s Guide Issue 2.2 5-4

CSTA Universal Failure Confirmation Event Error
Values

This section lists error values that the CSTAUniversalFailureConfEvent may
return to an application when a service request fails. Items in all capitals are
#defines from the TSAPI header files (acs.h, acsdefs.h, csta.h, and cstadefs.h).

Request Syntax
This section contains C coding information for the service request.

Confirmation Event Syntax
This section contains C coding information for the service’s confirmation event.

Important Feature Interactions
This section describes important interactions between the supplementary service
and MERLIN MAGIX switch features.

cstaQueryAgentState()

Programmer’s Guide Issue 2.2 5-5

cstaQueryAgentState()

The cstaQueryAgentState() service provides the agent state of an extension.
This service is available beginning with MERLIN MAGIX Release 2.0.

Beginning with MERLIN MAGIX Release 2.1, an extension may be a member of
multiple Calling Groups. The cstaQueryAgentState() service can be called with
a Calling Group provided in private data to obtain the agent status of an
extension for that particular group. Tables 5-20 and 5-21 provide the agentState
values in order of precedence, along with the corresponding MERLIN MAGIX
state.

Table 5-2. MERLIN MAGIX CTI Agent States - Calling Group Not Specified

agentState MERLIN MAGIX Agent State
AG_WORK_NOT_READY Extension is in the After Call Work State

AG_NULL Extension is logged out (Unavailable)
AG_NOT_READY Extension is logged in (Available) but is not ready

to accept Calling Group calls

AG_READY Extension is logged in (Available) and is ready to
accept Calling Group calls

Table 5-3. MERLIN MAGIX CTI Agent States - Calling Group Specified in
Private Data

agentState MERLIN MAGIX Agent State
AG_NULL Extension is logged out of the specified group. No

indication is provided as to whether
Auxiliary Work Time or After Call Work is active.

AG_WORK_NOT_READY Extension is in Auxiliary Work Time or After Call
Work state, and agent extension is logged into the
specified group.

AG_NOT_READY Extension is logged into the specified group and
neither Auxiliary Work Time nor After Call Work is
active, but the agent station is unavailable to take a
DGC call for some other reason.

AG_READY Extension is logged in to the specified group and is
ready to take a DGC call. Neither
Auxiliary Work Time nor After Call Work is active.

This service is valid for all non-QCC station types. The station does not have to
be a member of a DGC Group.

cstaQueryAgentState()

Programmer’s Guide Issue 2.2 5-6

Service Request Parameters

Table 5-4. cstaQueryAgentState() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

device the extension number of a telephone in this MERLIN
MAGIX system.

Private Service Request Parameters

Table 5-5. cstaQueryAgentState() Private Service Request Parameters in
MERLIN MAGIX Release 2.1

dgcID identifies the DGC Group for the query

Return Values

Table 5-6. cstaQueryAgentState() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

cstaQueryAgentState()

Programmer’s Guide Issue 2.2 5-7

Confirmation Event -
CSTAQueryAgentStateConfEvent

The CSTAQueryAgentStateConfEvent indicates that the switch is able to
provide the Agent State of device.

Table 5-7 CSTAQueryAgentStateConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_QUERY_AGENT_STATE_CONF

invokeID identifies service request within stream

agentState identifies the state of the agent
privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Errors

If the Agent State of device cannot be provided, MERLIN MAGIX CTI returns
one of the errors below. The MERLIN MAGIX switch leaves the device in the
state that it was in before the switch processed the cstaQueryAgentState()
request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaQueryAgentState() request, the CSTAUniversalFailureConfEvent
will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the device could not be queried for some reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_FEATURE – The CTI link is connected to a MERLIN LEGEND
(Release 5.0 or later) or MERLIN MAGIX (Release 1.0 or 1.5) switch.

INVALID_CSTA_DEVICE_IDENTIFIER - The device identifier device is not
valid. Some possible reasons are:

n The device is configured as a QCC.

n The device is not an extension on the MERLIN MAGIX system.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
cstaQueryAgentState() service requests exceeds the maximum number
of outstanding requests permitted at either the driver or the switch.

cstaQueryAgentState()

Programmer’s Guide Issue 2.2 5-8

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlQueryAgentState (MLPrivateData_t *privateData);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaQueryAgentState (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *device, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

cstaQueryAgentState()

Programmer’s Guide Issue 2.2 5-9

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAQueryAgentStateConfEvent_t queryAgentState;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAQueryAgentStateConfEvent_t {
 AgentState_t agentState;
} CSTAQueryAgentStateConfEvent_t;

typedef enum AgentState_t = {
 AG_NOT_READY = 0,
 AG_NULL = 1,
 AG_READY = 2,
 AG_WORK_NOT_READY = 3,
 AG_WORK_READY = 4
} AgentState_t;

cstaQueryAgentState()

Programmer’s Guide Issue 2.2 5-10

Important Feature Interactions

Call States
If the device is on a call, the state of the call will not be affected by the
cstaQueryAgentState() service request.

DGC Membership
The cstaQueryAgentState() service request will be granted even if the device
is not a member of a Calling Group.

Extension Status Mode
The cstaQueryAgentState() service is available in both Hotel/Motel and Group
Calling Supervisor mode.

agentMode AM_LOG_OUT corresponds to Extension Status 0.

agentMode AM_WORK_NOT_READY corresponds to Extension Status 1.

agentMode AM_LOG_IN corresponds to Extension Status 2.

cstaQueryDoNotDisturb()

Programmer’s Guide Issue 2.2 5-11

cstaQueryDoNotDisturb()

The cstaQueryDoNotDisturb() service allows an application to get the current
status of the Do Not Disturb feature at an extension. This service is available
beginning with MERLIN MAGIX Release 2.1.

This service is valid for all non-QCC station types.

Service Request Parameters

Table 5-8. cstaQueryDoNotDisturb() Parameters

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

device the extension number of a telephone in this
MERLIN MAGIX system

privateData NULL, not used for this service request

Return Values

Table 5-9. cstaQueryDoNotDisturb() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

cstaQueryDoNotDisturb()

Programmer’s Guide Issue 2.2 5-12

Confirmation Event - CSTAQueryDndConfEvent

The CSTAQueryDndConfEvent indicates that the switch has accepted the
request, validated the parameters, and obtained the Do Not Disturb feature
status.

Table 5-10. CSTAQueryDndConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_QUERY_DND_CONF

invokeID identifies service request within stream

doNotDisturb Indicates whether the Do Not Disturb feature is active
(TRUE) or inactive (FALSE)

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If the device cannot be queried, MERLIN MAGIX CTI returns one of the errors
below. The MERLIN MAGIX switch leaves the device in the state it was in before
the switch processed the cstaQueryDoNotDisturb() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaQueryDoNotDisturb() request, the CSTAUniversalFailureConfEvent
will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the state of device could not be obtained for some reason other than
the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER – The device identifier device is not
valid. Some possible reasons are:

n The device is configured as a QCC.

n The device is not a local extension on the MERLIN MAGIX system.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaQueryDoNotDisturb() request would exceed the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION – The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

cstaQueryDoNotDisturb()

Programmer’s Guide Issue 2.2 5-13

RESOURCE_LIMITATION_REJECTION – A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

cstaQueryDoNotDisturb (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *device, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAQueryDndConfEvent_t queryDnd;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAQueryDndConfEvent_t {
 boolean doNotDisturb;
} CSTAQueryDndConfEvent_t;

Important Feature Interactions

Call States
If the device is on a call, the state of the call will not be affected by the
cstaQueryDoNotDisturb() service request.

cstaQueryMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-14

cstaQueryMsgWaitingInd()

The cstaQueryMsgWaitingInd() service allows an application to get the current status of
an extension’s Message Waiting Lamp. This service is available beginning with MERLIN
MAGIX Release 2.1.

This service is valid for all non-QCC station types.

Service Request Parameters

Table 5-11. cstaQueryMsgWaitingInd() Parameters

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

device the extension number of a telephone in this
MERLIN MAGIX system

privateData NULL, not used for this service request

Return Values

Table 5-12. cstaQueryMsgWaitingInd() Return ValuesQueryMsgWaitingInd

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

cstaQueryMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-15

Confirmation Event - CSTAQueryMwiConfEvent

The CSTAQueryMwiConfEvent provides the status of the Message Waiting
Lamp at device.

Table 5-13. CSTAQueryMwiConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_QUERY_MWI_CONF

invokeID identifies service request within stream

messages indicates whether the Message Waiting Lamp is on (TRUE)
or off (FALSE)

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If the device cannot be queried, MERLIN MAGIX CTI returns one of the errors
below. The MERLIN MAGIX switch leaves the device in the state it was in before
the switch processed the cstaQueryMsgWaitingInd() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaQueryMsgWaitingInd() request, the CSTAUniversalFailureConf-
Event will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the state of device could not be provided for some reason other than
the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER – The device identifier device is not
valid. Some possible reasons are:

n The device is configured as a QCC.

n The device is not a local extension on the MERLIN MAGIX system.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaQueryMsgWaitingInd() service request exceeds the maximum
number of outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION – The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

cstaQueryMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-16

RESOURCE_LIMITATION_REJECTION – A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

cstaQueryMsgWaitingInd (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *device, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAQueryMwiConfEvent_t queryMwi;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAQueryMwiConfEvent_t {
 Boolean messages;
} CSTAQueryMwiConfEvent_t;

cstaQueryMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-17

Important Feature Interactions

Leave Word Calling
The cstaQueryMsgWaitingInd() service will return TRUE if the station being
queried has one or more Leave Word Calling messages in its mailbox.

Fax Message Waiting
The cstaQueryMsgWaitingInd() service will return TRUE if the station being
queried is administered as a Fax Message Waiting receiver and a fax has been
received.

Voice Mail
The cstaQueryMsgWaitingInd() service will return TRUE if the Voice Mail
system has activated the Message Waiting Lamp at the station to indicate the
presence of new voice mail.

cstaSetAgentState()

Programmer’s Guide Issue 2.2 5-18

cstaSetAgentState()

The cstaSetAgentState() service sets the state (agentMode) of an extension.
The effect of the cstaSetAgentState() is equivalent to the agent pressing
various programmed buttons (Login, Logout, Agent Work Time, After Call Work,
and Available) at his/her extension. This service is available beginning with
MERLIN MAGIX Release 1.5.

MERLIN MAGIX Release 2.0 CTI supports the agentMode values listed in Table
5-14.

Table 5-14. MERLIN MAGIX CTI Supported Agent Modes in Release 2.0

agentMode MERLIN MAGIX Agent Mode
AM_LOG_IN Log agent in (Available)
AM_LOG_OUT Log agent out (Unavailable)
AM_WORK_NOT_READY Place agent in the After Call Work State

MERLIN MAGIX Release 2.1 CTI supports the agentMode values listed in Table
5-16.

Table 5-15. MERLIN MAGIX CTI Supported Agent Modes in Release 2.1

agentMode MERLIN MAGIX Agent Mode
AM_LOG_IN Log agent into one or more groups
AM_LOG_OUT Log agent out of one or more groups
AM_WORK_NOT_READY Place agent in Auxiliary Work Time or After Call

Work State to be unavailable
AM_WORK_READY Take agent out of Auxiliary Work Time or

After Call Work state to be available

This service is valid for all non-QCC station types. The station does not have to
be a member of a DGC Group.

cstaSetAgentState()

Programmer’s Guide Issue 2.2 5-19

Service Request Parameters

Table 5-16. cstaSetAgentState() Parameters for MERLIN MAGIX Releases 1.5
and 2.0

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

device the extension number of a telephone in this
MERLIN MAGIX system.

agentMode the new agent state:
AM_LOGGED_IN, AM_LOGGED_OUT, or
AM_WORK_NOT_READY

agentID This parameter has no effect.
agentGroup This parameter has no effect.
agentPassword This parameter has no effect.
privateData NULL, not used for this service request

Table 5-17. cstaSetAgentState() Parameters for MERLIN MAGIX Release 2.1
and later

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

device the extension number of a telephone in this
MERLIN MAGIX system.

agentMode the new agent state:
AM_LOGGED_IN, AM_LOGGED_OUT,
AM_WORK_NOT_READY or AM_WORK_READY

agentID This parameter has no effect.
agentGroup The Calling Group ID, or null.
agentPassword This parameter has no effect.
privateData NULL, not used for this service request

Beginning with MERLIN MAGIX Release 2.1, an extension may be a member of
multiple Calling Groups. An application has the ability to perform Login or Logout
operations for either an individual group or for multiple groups when making a
cstaSetAgentState() service request:

n If agentGroup is specified and the agentMode value is AM_LOGGED_IN or
AM_LOGGED_OUT, then the Login/Logout operation affects the login status
only for the specified agentGroup.

cstaSetAgentState()

Programmer’s Guide Issue 2.2 5-20

n If agentGroup is not specified and the agentMode is AM_LOGGED_IN, then
the device is Logged In to all groups of which it is a member. If, however the
device is not a member of any Calling Group, then the device is Logged In to
all Calling Groups in the system.

n If agentGroup is not specified and the agentMode is AM_LOGGED_OUT, then
the device is Logged Out of all Calling Groups.

The cstaSetAgentState() service may also be used by an application to move
an extension to either the AM_WORK_READY mode or the AM_WORK_NOT_READY
mode. Beginning with MERLIN MAGIX Release 2.1, these modes are
independent of an extension’s Login/Logout status. Therefore, the agentGroup
parameter has no effect when requesting an extension be moved to either
AM_WORK_READY or AM_WORK_NOT_READY.

Return Values

Table 5-18. cstaSetAgentState() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

cstaSetAgentState()

Programmer’s Guide Issue 2.2 5-21

Confirmation Event -
CSTASetAgentStateConfEvent

The CSTASetAgentStateConfEvent indicates that the switch has accepted the
request, validated the parameters, and signaled the extension to change states.
Application(s) monitoring the extension will receive a CSTALoggedOnEvent,
CSTALoggedOffEvent, CSTAWorkNotReadyEvent or CSTAWorkReady-
Event (the CSTAWorkReadyEvent is available beginning with MERLIN MAGIX
Release 2.1), when the extension changes states.

Table 5-19. CSTASetAgentStateConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_SET_AGENT_STATE_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If the agent status for device cannot be changed, MERLIN MAGIX CTI returns
one of the errors below. For all error values except GENERIC_UNSPECIFIED,
the MERLIN MAGIX switch leaves the device in the state that it was in before
the switch processed the cstaSetAgentState() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaSetAgentState() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the state of device could not be changed for some reason other than
the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_FEATURE - An application will receive INVALID_FEATURE when:

n For MERLIN MAGIX Release 2.1 or later, the requested agentMode is
not AM_LOG_IN, AM_LOG_OUT, AM_WORK_READY or
AM_WORK_NOT_READY.

n For MERLIN MAGIX Release 2.0, the requested agentMode is not
AM_LOG_IN, AM_LOG_OUT or AM_WORK_NOT_READY.

n The CTI link is connected to a MERLIN LEGEND (Release 5.0 or later)
or MERLIN MAGIX Release 1.0 switch.

cstaSetAgentState()

Programmer’s Guide Issue 2.2 5-22

INVALID_CSTA_DEVICE_IDENTIFIER - The device identifier device is not
valid. Some possible reasons are:

n The device is configured as a QCC.

n The device is not a local extension on the MERLIN MAGIX system.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
cstaSetAgentState() service request exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

cstaSetAgentState (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *device, /* INPUT */
 AgentMode_t agentMode, /* INPUT */
 AgentID_t *agentID, /* INPUT */
 AgentGroup_t *agentGroup, /* INPUT */
 AgentPassword_t *agentPassword, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

typedef enum AgentMode_t = {
 AM_LOG_IN = 0,
 AM_LOG_OUT = 1,
 AM_NOT_READY = 2,
 AM_READY = 3,
 AM_WORK_NOT_READY = 4,
 AM_WORK_READY = 5
} AgentMode_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

cstaSetAgentState()

Programmer’s Guide Issue 2.2 5-23

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTASetAgentStateConfEvent_t setAgentState;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTASetAgentStateConfEvent_t {
 Nulltype null;
} CSTASetAgentStateConfEvent_t;

Important Feature Interactions

Call States
If the device is on a call, the state of the call will not be affected by the
cstaSetAgentState() service request.

Calling Group Membership
The cstaSetAgentState() service requested will be granted even if the device is
not a member of a Calling Group.

Extension Status Mode
The cstaSetAgentState() service is available in both Hotel/Motel and Group
Calling Supervisor mode.

Agent mode AM_LOG_IN corresponds to Extension Status 2. Agent mode
AM_LOG_OUT corresponds to Extension Status 0 and agent mode
AM_WORK_NOT_READY corresponds to Extension Status 1.

cstaSetDoNotDisturb()

Programmer’s Guide Issue 2.2 5-24

cstaSetDoNotDisturb()

The cstaSetDoNotDisturb() service allows the application to activate or
deactivate the Do Not Disturb feature at an extension. This service is available
beginning with MERLIN MAGIX Release 2.1.

This service is valid for all extensions that have a programmed Do Not Disturb
button.

This service is not valid for QCC, Single Line Set, and Multi-Function Module
extensions.

Service Request Parameters

Table 5-20. cstaSetDoNotDisturb() Parameters

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

device the extension number of a telephone in this
MERLIN MAGIX system

doNotDisturb Activate (TRUE) or deactivate (FALSE) the Do Not
Disturb feature

privateData NULL, not used for this service request

Return Values

Table 5-21. cstaSetDoNotDisturb() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

cstaSetDoNotDisturb()

Programmer’s Guide Issue 2.2 5-25

Confirmation Event - CSTASetDndConfEvent

The CSTASetDndConfEvent indicates that the switch has accepted the request,
validated the parameters, and signaled the extension to change Do Not Disturb
feature status. An application monitoring the extension will receive a CSTADo-
NotDisturbEvent if the extension changes its Do Not Disturb status.

Table 5-22. CSTASetDndConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_SET_DND_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If the Do Not Disturb feature cannot be activated/deactivated at the device, the
MERLIN MAGIX CTI returns one of the errors below. The MERLIN MAGIX switch
leaves the device in the state it was in before the switch processed the cstaSet-
DoNotDisturb() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaSetDoNotDisturb() request, the CSTAUniversalFailureConfEvent
contains one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the state of device could not be changed for some reason other than
the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER – The device identifier device is not
valid. Some possible reasons are:

n The device is configured as a QCC.

n The device is a Single Line Set.

n The device is an MFM.

n The device is not a local extension on the MERLIN MAGIX system.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaSetDoNotDisturb() request would exceed the maximum number of
outstanding requests permitted at either the driver or the switch.

cstaSetDoNotDisturb()

Programmer’s Guide Issue 2.2 5-26

INVALID_OBJECT_STATE – The extension is not in normal responding mode.

REQUEST_TIMEOUT_REJECTION – The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION – A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY – The extension does not
have a Do Not Disturb button.

Request Syntax

cstaSetDoNotDisturb (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *device, /* INPUT */
 Boolean doNotDisturb, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTASetDndConfEvent_t setDnd;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTASetDndConfEvent_t {
 Nulltype null;
} CSTASetDndConfEvent_t;

cstaSetDoNotDisturb()

Programmer’s Guide Issue 2.2 5-27

Important Feature Interactions

Do Not Disturb
A Do Not Disturb button must be programmed on device in order for the cstaSet-
DoNotDisturb() service request to succeed.

Normal, Responding Mode
The cstaSetDoNotDisturb() service request will fail when device is not in
normal, responding mode.

Station Types
Single Line Sets and MFM’s are not eligible for this service (Do Not Disturb is not
supported on these types of sets).

cstaSetMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-28

cstaSetMsgWaitingInd()

The cstaSetMsgWaitingInd() service allows an application to set or clear an
extension’s Message Waiting Lamp. This service is available beginning with
MERLIN MAGIX Release 2.1.

The MERLIN MAGIX switch maintains a Mailbox for each extension. The Mailbox
may contain up to ten messages. A user is able to view these messages using
his/her station display and soft keys.

When the cstaSetMsgWaitingInd() service is used to turn on the Message
Waiting Lamp, a CTI message is inserted into the station’s mailbox, analogous to
a voice mail message. Even if several requests are made to turn on the
Message Waiting Lamp, only one CTI message will appear in the Mailbox. The
existing CTI message will be overwritten, with the new message having a new
time stamp and unread message flag.

If the application sends a request to turn off the Message Waiting Lamp while it is
on due to a prior application request, the existing CTI message in the Mailbox will
be deleted. If there are no other messages in the Mailbox the Message Waiting
Lamp will be turned off. The cstaSetMsgWaitingInd() service will be
considered successful whether or not the Message Waiting Lamp is turned off as
a result of the request.

This service is valid for all non-QCC station types.

Service Request Parameters

Table 5-23. cstaSetMsgWaitingInd() Parameters

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

device the extension number of a telephone in this
MERLIN MAGIX system

messages Set Message Waiting Lamp on (TRUE) or off
(FALSE)

privateData NULL, not used for this service request

cstaSetMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-29

Return Values

Table 5-24. cstaSetMsgWaitingInd() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event - CSTASetMwiConfEvent

The CSTASetMwiConfEvent indicates that the switch has accepted the request,
validated the parameters, and signaled the extension to change the state of the
Message Waiting Lamp.

Table 5-25. CSTASetMwiConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_SET_MWI_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If the status of the Message Waiting Indicator cannot be set at device, MERLIN
MAGIX CTI returns one of the errors below. The MERLIN MAGIX switch leaves
the device in the state it was in before the switch processed the
cstaSetMsgWaitingInd() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaSetMsgWaitingInd() request, the CSTAUniversalFailureConfEvent
contains one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the state of device could not be changed for some reason other than
the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER – The device identifier device is not
valid. Some possible reasons are:

cstaSetMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-30

n The device is configured as a QCC.

n The device is not a local extension on the MERLIN MAGIX system.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
cstaSetMsgWaitingInd() request would exceed the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION – The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION – A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request. For example, the extension’s mailbox is full.

Request Syntax

cstaSetMsgWaitingInd (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *device, /* INPUT */
 Boolean messages, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTASetMwiConfEvent_t setMwi;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTASetMwiConfEvent_t {
 Nulltype null;
} CSTASetMwiConfEvent_t;

cstaSetMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-31

Important Feature Interactions

Messaging
A user may delete the CTI message as they would any other type of message in
the extension’s mailbox.

If a successful cstaSetMsgWaitingInd() service request is made with the
messages parameter set to FALSE, the extension’s Message Waiting indicator
may remain on due to other messages in the extension’s mailbox.

Normal, Responding Mode
An application may use the cstaSetMsgWaitingInd() service to set the status of
an extension’s Message Waiting Lamp even when the station is not in normal,
responding mode.

Station Types
Non-display sets (including single line sets) are eligible to receive CTI messages.
Without a display, a user will not be able to accurately determine why the
Message Waiting Lamp is on.

cstaSetMsgWaitingInd()

Programmer’s Guide Issue 2.2 5-32

Monitoring

Contents

Programmer’s Guide Issue 2.2 6-i

Monitor Types 6-2
Event Filtering 6-2
cstaMonitorDevice() 6-3
n Service Request Parameters 6-4
n Return Values 6-4
n Confirmation Event - CSTAMonitorConfEvent 6-4
n CSTA Universal Failure Event Error Values 6-5
n Request Syntax 6-6
n Confirmation Event Syntax 6-6
n Important Feature Interactions 6-11

Group Calling 6-11
MFM 6-11
Single Line Sets 6-11
QCC 6-11
Voice Response Port 6-11

cstaMonitorStop() 6-12
n Service Request Parameters 6-12
n Return Values 6-12
n Confirmation Event - CSTAMonitorStopConfEvent 6-13
n CSTA Universal Failure Event Error Values 6-13
n Request Syntax 6-13
n Confirmation Event Syntax 6-14
CSTAMonitorEndedEvent 6-15
n Event Parameters 6-15
n Event Causes 6-15
n Event Syntax 6-16
n Important Feature Interactions 6-17

Busy-Out 6-17
Cold Start 6-17
Server Time Change 6-17

Contents

6-ii Issue 2.2 Programmer’s Guide

Monitoring

Programmer’s Guide Issue 2.2 6-1

Applications use Monitoring services to monitor devices and receive Call Events
when call activity occurs at a monitored device. “Switch Environment” in
Chapter 2 details the devices that an application may monitor. Applications use
the Monitoring Services to establish a monitor. They use the event reception
services (included in Chapter 3) to receive the resulting events (Chapter 8).

Table 6-1 shows the TSAPI Monitoring Services and Events that the MERLIN
LEGEND and MERLIN MAGIX switches provide. Note that the MERLIN
LEGEND and MERLIN MAGIX switches do not provide all of the TSAPI
Monitoring Services and Events.

Table 6-1. MERLIN LEGEND/MERLIN MAGIX CTI Support for TSAPI
Monitoring Services and Events

 TSAPI Monitoring Services and Events
√ cstaMonitorDevice
 cstaMonitorCall
 cstaMonitorCallsViaDevice

√ CSTAMonitorConfEvent
√ cstaMonitorStop and CSTAMonitorStopConfEvent
 cstaChangeMonitorFilter and CSTAChangeMonitorFilterConfEvent

√ CSTAMonitorEndedEvent

! CAUTION:
When designing an application, be aware of not only the services and
events that the MERLIN LEGEND and MERLIN MAGIX switches
provide but also the parameters within those services and events. The
MERLIN LEGEND and MERLIN MAGIX switches do not provide all of
the optional TSAPI service and event parameters. The event manual
pages list all of the TSAPI parameters and indicate those that the
MERLIN LEGEND and MERLIN MAGIX switches provide.

Monitoring

6-2 Issue 2.2 Programmer’s Guide

 NOTE:
Applications should always be event driven, and use Call Events to react to
changes in connection states. An application, especially an application that
is intended to be switch-independent, cannot anticipate how all of the
various switch-specific features on the various switch vendors’ products will
affect connection states. Many switches have connection states (such as
the MERLIN LEGEND and MERLIN MAGIX Associative Active state) that
the CSTA connection state model does not adequately incorporate.
Vendors reflect these using the TSAPI events in various ways.

Monitor Types

The MERLIN LEGEND and MERLIN MAGIX switches support device monitoring.
The MERLIN LEGEND and MERLIN MAGIX switches do not support “TSAPI Call
Monitoring” or “TSAPI Monitor Calls Via Device.”

A device monitor provides an application with call events for calls that appear on
supported button types (see “Button Types” in Chapter 2) at a monitored
extension, Agent Status Events (in MERLIN MAGIX Release 1.5) or, beginning
with MERLIN MAGIX Release 2.0, with call events for calls in a Calling Group
queue, Feature and Agent Status Events. Generally, when a call no longer
appears on a monitored button type at a monitored extension, the application
receives a CSTAConnectionClearedEvent.1 The call may continue to appear at
other extensions in the system (and may be reflected in Call Events for those
extensions), but an application will not receive any further events on the monitor
for the extension from which the call disappeared.

An application may request monitors on multiple devices.

Event Filtering

When an application requests a monitor, it may specify an event filter. The event
filter specifies that the application is to receive only certain events (a subset of the
set that the MERLIN LEGEND or MERLIN MAGIX switch provides.) The MERLIN
LEGEND PBX Driver and MERLIN MAGIX PBX Driver do not permit an
application to change the event filter for an active monitor.

1 The application will receive a CSTATransferredEvent (rather that a

CSTAConnectionClearedEvent) when a call leaves a device as a result of a transfer operation.

cstaMonitorDevice()

Programmer’s Guide Issue 2.2 6-3

cstaMonitorDevice()

The cstaMonitorDevice() service provides Call Events reflecting telephone
activity at a device. An application uses the monitorFilter parameter to request
that the driver filter out events that it does not wish to receive. When an
application makes a successful cstaMonitorDevice() request, the MERLIN
LEGEND switch will

n report call events for calls that originate from or arrive at the device after
the CSTAMonitorConfEvent.

n report call events for a call in progress at the device beginning with the
next call event for that call at the monitored device. Note that until the
monitored device takes some action on the call, the application will not
receive any events for other parties on such a call. Once the monitored
device takes some action on the call, the application will receive events for
all parties on the call.

The MERLIN MAGIX switch will report the above and in addition,

n report Agent Status events for a device (in this case a station) after the
CSTAMonitorConfEvent.

n report Feature events for a device (in this case a station) after the
CSTAMonitorConfEvent.

n report queue events for calls that enter or leave a Calling Group Queue

Once an application begins receiving events about a call, the application will
continue to receive events pertaining to the call so long as the call remains at the
monitored device. When the call leaves the monitored device, the application will
not receive further events pertaining to the call (on the monitor for that device.)

Chapter 2 details the extension and button types on which the MERLIN LEGEND
and MERLIN MAGIX switches provide monitoring.

The PBX driver will request no more than one monitor on a device at any time
across a MERLIN LEGEND or MERLIN MAGIX CTI link. If multiple streams
monitor the same device, then the driver replicates the events for each of the
monitoring applications. Thus, even though the switch limits the number of
monitors on a device, the driver design allows a greater number of monitors.

Unlike call control requests, a telephone does not need to be in Normal,
Responding Mode for an application to successfully establish a monitor on that
telephone. A monitor will continue even if the telephone transitions to/from
Normal, Responding mode. The MERLIN LEGEND or MERLIN MAGIX switch will
generate events for a telephone regardless of whether it is in a Normal,
Responding Mode.

Monitoring

6-4 Issue 2.2 Programmer’s Guide

Service Request Parameters

Table 6-2. cstaMonitorDevice() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

deviceID monitor this station2 or (beginning in MERLIN MAGIX
Release 1.5) Calling Group queue

monitorFilter optionally specifies a subset of events the application
will receive

privateData NULL, not used for this service request

Return Values

Table 6-3. cstaMonitorDevice() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier.
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted.

Confirmation Event - CSTAMonitorConfEvent

The driver assigns a monitor cross-reference ID when it successfully enables a
monitor on a device. The monitorCrossRefID will be present in any following
subsequent events sent to the requesting application. Each monitor within the
stream has a unique monitorCrossRefID.

2 For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX Releases 1.0, monitoring a

station means that the application will receive events for calls appearing on SA buttons at that
station. Beginning with MERLIN MAGIX Release 1.5, the application will also receive agent status
events for the station. Beginning with MERLIN MAGIX Release 2.0, the application will also receive
events for calls appearing at Line, Pool and Coverage buttons at the station.

cstaMonitorDevice()

Programmer’s Guide Issue 2.2 6-5

Table 6-4. CSTAMonitorConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION
eventType CSTA_MONITOR_CONF
invokeID identifies service request within stream

monitorCrossRefID associates subsequent events with this monitor

monitorFilter structure indicating the event set that the monitor will
provide

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

GENERIC_UNSPECIFIED – The monitor could not be started for a reason other
than the more specific reasons given below.

INVALID_CSTA_DEVICE_IDENTIFIER – The deviceID does not identify a
station of a type that may be monitored, or (beginning with MERLIN MAGIX
Release 1.5) a Calling Group queue. This value is returned if an application
tries to monitor a QCC or MFM. Chapter 2 discusses the device types that
may be monitored.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the service request
exceeds the maximum number of outstanding requests permitted at either
the PBX driver or the switch.

OVERALL_MONITOR_LIMIT_EXCEEDED – This monitor would exceed the
switch’s or PBX driver’s limit for monitors (across all devices).

REQUEST_TIMEOUT_REJECTION – The MERLIN LEGEND PBX driver or
MERLIN MAGIX PBX driver sent the request to the switch, but did not
receive a response within the allotted time. This is usually an indication that
there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION – A Telephony Server, MERLIN LEGEND
PBX driver , or MERLIN MAGIX PBX driver resource limitation prevented
the system from processing the request.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

Monitoring

6-6 Issue 2.2 Programmer’s Guide

Request Syntax

cstaMonitorDevice (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *deviceID, /* INPUT */
 CSTAMonitorFilter_t *monitorFilter,/* INPUT */
 PrivateData_t *privateData); /* INPUT */

Confirmation Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union
 {
 CSTAMonitorConfEvent_t monitorStart;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAMonitorConfEvent_t {
 CSTAMonitorCrossRefID_t monitorCrossRefID;
 CSTAMonitorFilter_t monitorFilter;
} CSTAMonitorConfEvent_t;

cstaMonitorDevice()

Programmer’s Guide Issue 2.2 6-7

typedef unsigned short CSTACallFilter_t;
#define CF_CALL_CLEARED 0x8000
#define CF_CONFERENCED 0x4000
#define CF_CONNECTION_CLEARED 0x2000
#define CF_DELIVERED 0x1000
#define CF_DIVERTED 0x0800
#define CF_ESTABLISHED 0x0400
#define CF_FAILED 0x0200
#define CF_HELD 0x0100
#define CF_NETWORK_REACHED 0x0080
#define CF_ORIGINATED 0x0040
#define CF_QUEUED 0x0020
#define CF_RETRIEVED 0x0010
#define CF_SERVICE_INITIATED 0x0008
#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;
#define FF_CALL_INFORMATION 0x80
#define FF_DO_NOT_DISTURB 0x40
#define FF_FORWARDING 0x20
#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;
#define AF_LOGGED_ON 0x80
#define AF_LOGGED_OFF 0x40
#define AF_NOT_READY 0x20
#define AF_READY 0x10
#define AF_WORK_NOT_READY 0x08
#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;
#define MF_BACK_IN_SERVICE 0x80
#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {
 CSTACallFilter_t call;
 CSTAFeatureFilter_t feature;
 CSTAAgentFilter_t agent;
 CSTAMaintenanceFilter_t maintenance;
 long privateFilter;
} CSTAMonitorFilter_t;

If the application does not apply any event filtering, then the monitorFilter in the
Confirmation Event will indicate that the MERLIN LEGEND or MERLIN MAGIX
switch will provide the following default set of events:

Monitoring

6-8 Issue 2.2 Programmer’s Guide

Table 6-5. Events Provided With No Event Filtering

 TSAPI Call Events for Monitored Stations -
MERLIN LEGEND (Release 5.0 and later) and
MERLIN MAGIX Release 1.0

 CSTACallClearedEvent
√ CSTAConferencedEvent
√ CSTAConnectionClearedEvent
√ CSTADeliveredEvent
 CSTADivertedEvent

√ CSTAEstablishedEvent
 CSTAFailedEvent

√ CSTAHeldEvent
√ CSTANetworkReachedEvent
 CSTAOriginatedEvent
 CSTAQueuedEvent

√ CSTARetrievedEvent
√ CSTAServiceInitiatedEvent
√ CSTATransferredEvent

 TSAPI Call Events for Monitored Stations -

MERLIN MAGIX (Releases 1.5 and later)
 CSTACallClearedEvent

√ CSTAConferencedEvent
√ CSTAConnectionClearedEvent
√ CSTADeliveredEvent
√ CSTADivertedEvent
√ CSTAEstablishedEvent
 CSTAFailedEvent

√ CSTAHeldEvent
√ CSTANetworkReachedEvent
 CSTAOriginatedEvent

√ CSTAQueuedEvent
√ CSTARetrievedEvent
√ CSTAServiceInitiatedEvent
√ CSTATransferredEvent

cstaMonitorDevice()

Programmer’s Guide Issue 2.2 6-9

 TSAPI Call Events for Monitored Calling Group Queues -
MERLIN MAGIX (Releases 1.5 and later)

 CSTACallClearedEvent
 CSTAConferencedEvent

√ CSTAConnectionClearedEvent
 CSTADeliveredEvent

√ CSTADivertedEvent
 CSTAEstablishedEvent
 CSTAFailedEvent
 CSTAHeldEvent
 CSTANetworkReachedEvent
 CSTAOriginatedEvent

√ CSTAQueuedEvent
 CSTARetrievedEvent
 CSTAServiceInitiatedEvent
 CSTATransferredEvent

 TSAPI Feature Event Reports for Monitored Stations -

MERLIN MAGIX Release 2.0
 CSTACallInfoEventEvent

√ CSTADoNotDisturbEvent
 CSTAForwardingEvent
 CSTAMessageWaitingEvent

 TSAPI Feature Event Reports for Monitored Stations -

MERLIN MAGIX Release 2.1 and later
√ CSTACallInfoEventEvent
√ CSTADoNotDisturbEvent
 CSTAForwardingEvent
 CSTAMessageWaitingEvent

 TSAPI Agent Status Events for Monitored Stations -

MERLIN MAGIX Release 1.5
√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
 CSTANotReadyEvent
 CSTAReadyEvent

√ CSTAWorkNotReadyEvent
 CSTAWorkReadyEvent

Monitoring

6-10 Issue 2.2 Programmer’s Guide

 TSAPI Agent Status Events for Monitored Stations -
MERLIN MAGIX Release 2.0

√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
√ CSTANotReadyEvent
√ CSTAReadyEvent
√ CSTAWorkNotReadyEvent
 CSTAWorkReadyEvent

 TSAPI Agent Status Events for Monitored Stations -

MERLIN MAGIX Release 2.1 and later
√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
√ CSTANotReadyEvent
√ CSTAReadyEvent
√ CSTAWorkNotReadyEvent
√ CSTAWorkReadyEvent

cstaMonitorDevice()

Programmer’s Guide Issue 2.2 6-11

Important Feature Interactions

An application may only monitor supported station types (see “Switch
Environment - Extension Types” in Chapter 2), or, beginning with MERLIN
MAGIX Release 1.5, Calling Group queues.

Group Calling
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX Release 1.0
environment, an application may not monitor a Calling Group queue.

Beginning with MERLIN MAGIX Release 1.5, an application may monitor a
Calling Group queue.

MFM
An application may not monitor an MFM.

Single Line Sets
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application may not monitor a Single Line Set.

Beginning with MERLIN MAGIX Release 2.0, an application may monitor a Single
Line Set.

QCC
An application may not monitor a QCC.

Voice Response Port
In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX Releases 1.0
and 1.5 environments, an application may not monitor a Voice Response Unit.

Beginning with MERLIN MAGIX Release 2.0, an application may monitor a Voice
Response Unit.

Monitoring

6-12 Issue 2.2 Programmer’s Guide

cstaMonitorStop()

The cstaMonitorStop service terminates the event reporting for a device on this
stream.

Service Request Parameters

Table 6-6. cstaMonitorStop() Parameters

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

monitorCrossRefID stop this monitor

privateData NULL, not used for this service request

Return Values

Table 6-7. cstaMonitorStop() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier.
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted.

cstaMonitorStop()

Programmer’s Guide Issue 2.2 6-13

Confirmation Event -
CSTAMonitorStopConfEvent

Table 6-8. CSTAMonitorStopConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_MONITOR_STOP_CONF

invokeID identifies service request within stream

privateData NULL, no private data present

CSTA Universal Failure Event Error Values

GENERIC_UNSPECIFIED – The monitor could not be stopped for some reason
other than the more specific reasons below.

INVALID_CROSS_REF_ID – The monitorCrossRefID is invalid.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the service request
exceeds the maximum number of outstanding requests permitted at either
the PBX driver or the switch.

REQUEST_TIMEOUT_REJECTION – The MERLIN LEGEND or MERLIN MAGIX
PBX driver sent the request to the switch, but did not receive a response
within the allotted time. This is usually an indication that there is a problem
with the CTI link.

RESOURCE_LIMITATION_REJECTION – A Telephony Server, MERLIN LEGEND
PBX driver, or MERLIN MAGIX PBX driver resource limitation prevented the
system from processing the request.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

Request Syntax

cstaMonitorStop (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 CSTAMonitorCrossRefID_t monitorCrossRefID,/* INPUT */
 PrivateData_t *privateData); /* INPUT */

Monitoring

6-14 Issue 2.2 Programmer’s Guide

Confirmation Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct {
 InvokeID_t invokeID;
 union {
 CSTAMonitorStop_t monitorStop;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAMonitorStop_t {
 CSTAMonitorCrossRefID_t monitorCrossRefID;
} CSTAMonitorStop_t;

CSTAMonitorEndedEvent

Programmer’s Guide Issue 2.2 6-15

CSTAMonitorEndedEvent

This event indicates that the MERLIN LEGEND or MERLIN MAGIX switch
terminated the event reporting for a device.

An application must be prepared to receive a Monitor Ended event for any
monitored device at any time. The CSTAMonitorEndedEvent may be the result of
a transient problem (e.g. the CTI link was reset or temporarily disconnected). A
robust application will implement a strategy for re-establishing a device monitor
when this event is received.

Event Parameters

Table 6-9. CSTAMonitorEndedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_MONITOR_ENDED

monitorCrossRefID Monitor that ended

cause reason monitor ended

privateData NULL, none present in Monitor Ended event

Event Causes

Table 6-10. CSTAMonitorEndedEvent Causes

EC_NETWORK_NOT_OBTAINABLE CTI link failed.

Monitoring

6-16 Issue 2.2 Programmer’s Guide

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAMonitorEndedEvent_t monitorEnded;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAMonitorEndedEvent_t {
 CSTAEventCause_t cause;
} CSTAMonitorEndedEvent_t;

CSTAMonitorEndedEvent

Programmer’s Guide Issue 2.2 6-17

Important Feature Interactions

Busy-Out
When a port or board for a monitored device is busied-out, application will
receive a CSTAMonitorEndedEvent for that device.

Cold Start
When the MERLIN LEGEND or MERLIN MAGIX switch goes through a cold start,
the application will receive a CSTAMonitorEndedEvent for all monitored
devices.

Server Time Change
When the Telephony Server’s time is changed, the application may receive a
CSTAMonitorEndedEvent for all monitored devices.

Monitoring

6-18 Issue 2.2 Programmer’s Guide

Snapshot Services

Contents

Programmer’s Guide Issue 2.2 7-i

Sending Snapshot Service Requests and Receiving
Confirmations... 7-1

Snapshot Service Request Failures... 7-2
Snapshot Service Page Format .. 7-2
cstaSnapshotDeviceReq() .. 7-4
n Service Request Parameters ... 7-4
n Return Values .. 7-4
n Confirmation Event - CSTASnapshotDeviceConfEvent............................... 7-5
n CSTA Universal Failure Confirmation Event Error Values 7-5
n Request Syntax.. 7-6
n Confirmation Event Syntax... 7-7
n Important Feature Interactions ... 7-8

Busy Calls.. 7-8
Call Screening ... 7-8
Connection States ... 7-8
Coverage ... 7-9
Direct Facility Termination (DFT) Buttons ... 7-9
Forwarding... 7-9
Group Calling (DGC) ... 7-9
Reminder Service Calls ... 7-9
Service Observing ... 7-9
Shared System Access (SSA) Buttons.. 7-9

Contents

7-ii Issue 2.2 Programmer’s Guide

Snapshot Services

Programmer’s Guide Issue 2.2 7-1

An application uses Snapshot Services to query the current state of a call or
device. MERLIN MAGIX CTI Snapshot Services allow an application to
determine information about calls associated with an extension. The information
includes a list of Calls associated with the given extension and the Connection
State of each Call.

Table 7-1 shows the TSAPI Snapshot Services and confirmation events that the
MERLIN MAGIX switch provides beginning with MERLIN MAGIX Release 2.1.

Table 7-1. MERLIN MAGIX CTI Support for TSAPI Snapshot Services

 TSAPI Snapshot Services -
MERLIN MAGIX Release 2.1 and later

 cstaSnapshotCallReq() & CSTASnapshotCallConfEvent
√ cstaSnapshotDeviceReq() & CSTASnapshotDeviceConfEvent

Sending Snapshot Service Requests
and Receiving Confirmations

Each Snapshot Service request has an associated confirmation event. This book
presents information about each service’s confirmation event under the heading
for the service.

An application must receive the confirmation event on the stream where it sends
the Snapshot Service request. “Receiving Events” in Chapter 3 describes how
applications receive confirmation events.

Confirmations have different meanings for various services. Refer to the manual
page for each service when coding applications so as to use the service
confirmations properly. In general, it is recommended that an application monitor
the extension it is controlling so that it receives events reflecting the call activity at
the extension. Chapter 6 describes the Monitoring Services.

7-2 Issue 2.2 Programmer’s Guide

Snapshot Service Request Failures

If the service request fails for some reason, the application will receive a
CSTAUniversalFailureConfEvent in place of the service confirmation. Each
service description includes a list of the error values that the
CSTAUniversalFailureConfEvent may carry for that service as well as the
meanings of those values in the context of that service. Since the
CSTAUniversalFailureConfEvent applies to other services, as well as Snapshot
Services, its description is found in the section pertaining to
CSTAUniversalFailureConfEvent in Chapter 3.

Snapshot Service Page Format

The pages describing each TSAPI snapshot service contain the following
sections, as appropriate:

Service Name and Description

The service name appears first. A description of that service immediately follows
the name.

Service Request Parameters

A table lists the service request parameters and summarizes their use.

Return Values

A table lists the return values for the service request.

In all function returns, success values follow the TSAPI rules. If the requesting
application generated the invokeID value, then a successful function call returns
zero. If the TSAPI library generates the invokeID value, then a successful
function call returns the value of the invokeID. This is not explicitly re-stated for
each service. “Sending TSAPI Requests and Receiving Confirmations” in
Chapter 3 describes invokeID usage in more detail.

Confirmation Event

This section names the TSAPI confirmation event for the service and contains a
table describing the confirmation event parameters.

CSTA Universal Failure Confirmation Event Error
Values

This section lists error values that the CSTAUniversalFailureConfEvent may
return to an application when a service request fails. Items in all capitals are
#defines from the TSAPI header files (acs.h, acsdefs.h, csta.h, and cstadefs.h).

Request Syntax

This section contains C coding information for the service request.

Programmer’s Guide Issue 2.2 7-3

Confirmation Event Syntax

This section contains C coding information for the service’s confirmation event.

Important Feature Interactions

This section describes important interactions between the snapshot service and
MERLIN MAGIX switch features.

7-4 Issue 2.2 Programmer’s Guide

cstaSnapshotDeviceReq()

The cstaSnapshotDeviceReq() service provides information about calls
associated with an extension. The information includes the Call Identifier and Call
State for each call at the station (up to ten calls are reported). The Call State is
comprised of a list of Connection State values for up to five endpoints on the call,
starting with the Connection State of the specified station. The information does
not include the identity of the other devices on the call.

This service is available beginning with MERLIN MAGIX Release 2.1.

This service is valid for all non-QCC station types.

Service Request Parameters

Table 7-2. cstaSnapshotDeviceReq() Parameters

acsHandle ACS stream on which service request is being
made

invokeID identifies this service request within the stream

snapshotObj the extension number of a telephone in this
MERLIN MAGIX system

privateData NULL, not used for this service request

Return Values

Table 7-3. cstaSnapshotDeviceReq() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Programmer’s Guide Issue 2.2 7-5

Confirmation Event -
CSTASnapshotDeviceConfEvent

The CSTASnapshotDeviceConfEvent indicates that the switch has accepted
the request, validated the parameters.

Table 7-4. CSTASnapshotDeviceConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_SNAPSHOT_DEVICE_CONF_EVENT

invokeID identifies service request within stream

snapshotData contains call information for snapshotObj including:

 count: the number of calls being reported (0-10)

 info[]: an array of calls, where each element contains:

callIdentifier: Connection Identifier

callState: a list of local connection states for end
points starting with the local connection state of
snapshotObj

privateData NULL, no private data present

CSTA Universal Failure Confirmation Event
Error Values

If snapshotObj cannot be queried, MERLIN MAGIX CTI returns one of the errors
below. The MERLIN MAGIX switch leaves the extension in the state it was in
before the switch processed the cstaSnapshotDeviceReq() request.

When an application receives a CSTAUniversalFailureConfEvent in response
to a cstaSnapshotDeviceReq() request, the CSTAUniversalFailureConfEvent
will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_-
UNSPECIFIED when a snapshot of snapshotObj could not be provided for
some reason other than the more specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - The device identifier snapshotObj
is not valid. Some possible reasons are:

n The snapshotObj is configured as a QCC.

n The snapshotObj is not a local extension on the MERLIN MAGIX
system.

7-6 Issue 2.2 Programmer’s Guide

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
cstaSnapshotDeviceReq() service request exceeds the maximum number
of outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

cstaSnapshotDeviceReq (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 DeviceID_t *snapshotObj, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

Programmer’s Guide Issue 2.2 7-7

Confirmation Event Syntax

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 struct
 {
 InvokeID_t invokeID;
 union
 {
 CSTASnapshotDeviceConfEvent_t snapshotDevice;
 } u;
 } cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct CSTASnapshotDeviceConfEvent_t {
 CSTASnapshotDeviceData_t snapshotData;
} CSTASnapshotDeviceConfEvent_t;

typedef struct CSTASnapshotDeviceData_t {
 int count;
 struct CSTASnapshotDeviceResponseInfo_t *info;
} CSTASnapshotDeviceData_t;

typedef struct CSTASnapshotDeviceResponseInfo_t {
 ConnectionID_t callIdentifier;
 CSTACallState_t localCallState;
} CSTASnapshotDeviceResponseInfo_t;

typedef struct CSTACallState_t {
 int count;
 LocalConnectionState_t *state;
} CSTACallState_t;

typedef enum LocalConnectionState_t {
 CS_NONE = -1,
 CS_NULL = 0,
 CS_INITIATE = 1,
 CS_ALERTING = 2,
 CS_CONNECT = 3,
 CS_HOLD = 4,
 CS_QUEUED = 5,
 CS_FAIL = 6
} LocalConnectionState_t;

7-8 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Busy Calls
If a call being reported is an internal call to a busy station without coverage or
forwarding (i.e., the calling party hears busy), the Local Connection State of
snapshotObj will be reported as CS_INITIATE, and no other endpoints on the
call will be reported.

Call Screening
When the cstaSnapshotDeviceReq() service is requested for a station that is
screening a call, all eligible calls will be reported, including the screened call.

When the cstaSnapshotDeviceReq() service is requested for a station on a call
that is being screened by another station, the status of the call at the Call
Screening station will not be reported.

Connection States
The snapshotObj may be active on a call and the service will not affect the state
of the station or any endpoint on the call.

For incoming calls alerting at snapshotObj, the Local Connection State of the
external endpoint is reported as CS_CONNECT. It remains CS_CONNECT for the
duration of the call or until the endpoint is removed from the call.

For external calls originated from snapshotObj, the Local Connection State of
the external endpoint is reported as either CS_NULL, CS_ALERTING, or
CS_CONNECT, depending on the call progress and type of facility used.

The Local Connection State of snapshotObj may be reported as CS_INITIATE,
CS_ALERTING, CS_CONNECT, or CS_HOLD.

The Local Connection State of internal extension endpoints may be reported as
CS_NULL, CS_ALERTING, CS_CONNECT, or CS_HOLD.

When reporting the Local Connection States of internal extension endpoints
(other than snapshotObj), no filtering of data is performed based on the button
type at the endpoint. For example, if station A calls station B and station C
answers the call on an SSA button for station B, a Snapshot of A will include the
CS_CONNECT Local Connection State for station C, even though C answered the
call on a SSA button.

The Local Connection State of a DGC endpoint is reported as CS_QUEUED.

While a DPT call is alerting at snapshotObj, a Snapshot of the station will include
the Local Connection State of the call at snapshotObj (CS_ALERTING), but will
not include the Local Connection State of the call at any other station.

Programmer’s Guide Issue 2.2 7-9

Coverage
While a coverage call is alerting:

n A Snapshot of the coverage sender will include the Local Connection State
of the call at snapshotObj, but will not include the Local Connection State
of the call at any of the coverage receivers.

n A Snapshot of a coverage receiver will include the Local Connection State
of the call at snapshotObj. The Snapshot will also include the Local
Connection State of the call at the coverage sender if and only if the call is
alerting at the coverage sender station. The Snapshot will not include the
Local Connection State of the call at any other coverage receiver.

Direct Facility Termination (DFT) Buttons
Calls appearing on DFT buttons at snapshotObj will not be reported by the
cstaSnapshotDeviceReq() service.

Forwarding
While a forwarded call is alerting:

n A Snapshot of the forwarding station will include the Local Connection
State of the call at that station (CS_ALERTING), but will not include the
Connection State of the call at the forwarding destination station.

n A Snapshot of the forwarding destination station will include the Local
Connection State of the call at that station (CS_ALERTING). The Snapshot
will include the Local Connection State of the call at the forwarding station
if and only if the call is alerting at the forwarding station.

Group Calling (DGC)
The Local Connection State of a DGC endpoint is reported as CS_QUEUED.

Reminder Service Calls
Reminder calls received at snapshotObj will not be reported by the
cstaSnapshotDeviceReq() service.

Service Observing
When an application uses the cstaSnapshotDeviceReq() service to take a
snapshot of a Service Observing station, all eligible calls will be reported including
Service Observing calls.

When an application uses the cstaSnapshotDeviceReq() service to take a
snapshot of a station that is being observed by another station, the status of the
call at the Service Observing station will not be reported.

Shared System Access (SSA) Buttons
Calls appearing on SSA buttons at snapshotObj will not be reported by the
cstaSnapshotDeviceReq() service.

7-10 Issue 2.2 Programmer’s Guide

Call Events

Contents

Programmer’s Guide Issue 2.2 8-i

General Call Event Feature Interactions 8-3
n Bridging, Coverage and Shared Facility Interactions 8-3

Call Event Distribution in MERLIN MAGIX Release
2.0 and later 8-4
n Coverage Buttons 8-4

Event Page Format 8-5
CSTAConferencedEvent 8-7

n Event Parameters 8-7
n Event Scenario Diagram 8-8
n Event Causes 8-9
n Event Syntax 8-9
n Important Feature Interactions 8-10

Barge-In 8-10
Bridging 8-10
Call Screening 8-10
Coverage 8-10
Group Calling (DGC) 8-10
Networking 8-10
Pool 8-11
QCC 8-11
Service Observing 8-11

CSTAConnectionClearedEvent 8-12
n Event Parameters 8-13
n Event Scenario Diagram 8-14
n Event Causes 8-14
n Event Syntax 8-15
n Private Data Versions 2 and 3 Event Syntax 8-15
n Important Feature Interactions 8-16

Account Code 8-16
Call Pickup 8-16

Contents

8-ii Issue 2.2 Programmer’s Guide

Call Screening 8-16
Conferencing 8-16
Coverage 8-17
Delay Announcement Unit 8-17
DFT/DPT 8-17
Direct Voice Mail 8-18
Drop 8-18
Forward/Follow Me 8-18
Group Calling (DGC) 8-19
QCC 8-19
Service Observing 8-19
Shared Facility Interactions 8-19

CSTADeliveredEvent 8-20
n Event Parameters 8-20
n Event Scenario Diagram 8-25
n Event Causes 8-25
n Event Syntax 8-26
n Private Data Parameters 8-27
n Private Data Versions 2 and 3 Syntax 8-29
n Private Data Version 1 Syntax 8-30
n Important Feature Interactions 8-31

Auto Answer All - AAA (ATL Only) 8-31
Auto Answer Intercom - AAI (ATL Only) 8-31
Call Screening 8-31
Call Waiting 8-31
Callback (CBQ) 8-31
Camp-On 8-31
Coverage 8-32
Direct Facility/Pool Termination 8-32
Direct Inward Dial (DID) Trunks 8-33
Direct Line Console (DLC) 8-33
Forward on Busy 8-33
Forward/Follow Me 8-34
Group Calling (DGC) 8-34
Networking 8-35
Night Service 8-35
Paging 8-35
Park 8-36
PRI 8-36
Queued Call Console (QCC) 8-36
Reminder Service 8-36
Service Observing 8-36

Contents

Programmer’s Guide Issue 2.2 8-iii

Transfer Return 8-37
Voice Announce 8-37
Voice Prompting 8-37

CSTADivertedEvent 8-38
n Event Parameters 8-38
n Event Scenario Diagram 8-39
n Event Causes 8-39
n Event Syntax 8-40
n Important Feature Interactions 8-40

Call Pickup 8-40
Coverage 8-40
Direct Facility/Pool Termination 8-40
Group Calling (DGC) 8-41
Queued Call Console (QCC) 8-41

CSTAEstablishedEvent 8-42
n Event Parameters 8-42
n Event Scenario Diagram 8-46
n Event Causes 8-47
n Event Syntax 8-48
n Private Data Parameters 8-49
n Private Data Versions 2 and 3 Syntax 8-51
n Private Data Version 1 Syntax 8-52
n Important Feature Interactions 8-53

Auto Answer 8-53
Barge-In 8-53
Call Pickup 8-53
Call Screening 8-53
Camp-On 8-53
Coverage 8-54
Direct Facility/Pool Termination 8-54
Direct Line Console (DLC) 8-55
Direct Inward Dial (DID) Trunks 8-55
Forward on Busy 8-55
Forward/Follow Me 8-55
Group Calling (DGC) 8-56
Networking 8-56
Paging 8-57
Queued Call Console (QCC) 8-57
Park 8-57
PRI 8-57
Reminder Service 8-57
Service Observing 8-58

Contents

8-iv Issue 2.2 Programmer’s Guide

Transfer Return 8-58
Voice Announce 8-58
Voice Prompting 8-58

CSTAHeldEvent 8-59
n Event Parameters 8-59
n Event Scenario Diagram 8-60
n Event Causes 8-60
n Event Syntax 8-61
n Important Feature Interactions 8-61

Conference 8-61
Park 8-61
Service Observing 8-62
Transfer 8-62

CSTANetworkReachedEvent 8-63
n Event Parameters 8-63
n Event Scenario Diagram 8-64
n Event Causes 8-64
n Event Syntax 8-65
n Important Feature Interactions 8-66

ARS 8-66
Auto-Dial 8-66
End-Of-Dial Character 8-66
Marked System Speed Dial 8-66
Networking 8-66
Non-PRI Trunks 8-67
Pool Access Code 8-67
PRI Trunks 8-67
Redial 8-67
Save Number Dial 8-67
Service Observing 8-67

CSTAQueuedEvent 8-68
n Event Parameters 8-69
n Event Scenario Diagram 8-70
n Event Causes 8-71
n Event Syntax 8-71
n Private Data Parameters 8-72
n Private Data Version 2 and 3 Syntax 8-73
n Important Feature Interactions 8-74

Coverage 8-74
Group Calling (DGC) 8-74

CSTARetrievedEvent 8-75

Contents

Programmer’s Guide Issue 2.2 8-v

n Event Parameters 8-75
n Event Scenario Diagram 8-75
n Event Causes 8-76
n Event Syntax 8-76
n Important Feature Interactions 8-77

Consultation 8-77
Service Observing 8-77
Transfer 8-77

CSTAServiceInitiatedEvent 8-78
n Event Parameters 8-79
n Event Scenario Diagram 8-79

Event Causes 8-80
n Event Syntax 8-80
n Important Feature Interactions 8-81

Service Observing 8-81
CSTATransferredEvent 8-82

n Event Parameters 8-83
n Event Scenario Diagram 8-84

Event Causes 8-84
n Event Syntax 8-85
n Important Feature Interactions 8-86

Coverage 8-86
Group Calling (DGC) 8-86
Networking 8-86
Pool 8-86
Direct Voice Mail 8-86

Contents

8-vi Issue 2.2 Programmer’s Guide

Call Events

Programmer’s Guide Issue 2.2 8-1

Call Events track telephony activity occurring at a device. Telephony activity may
occur as a result of user activity at the device, call activity at the device (for
example, an incoming call or the far-end party dropping from a call), or the activity
of a CTI application (for example an application dropping a device from a call).

Applications use Call Events to track the activity of a connection, device, or call
that is of interest to the application. Since telephony activity can occur at any
time, these messages are asynchronous. An application that needs to receive
Call Events for a device must:

n Open a stream using the Control Services (Chapter 3);

n Monitor that device using the Monitor Services (Chapter 6);

n Receive events using the Control Services (Chapter 3).

 NOTE:
Applications should always be event driven and use TSAPI events to react
to telephony activity. An application should never presume a specific call
state model. The MERLIN LEGEND and MERLIN MAGIX switches provide
many features, and simple call state models will not take into account all
feature interactions that may occur. In addition, future releases of the
switch may contain new features that interact in ways that the application’s
call state model did not anticipate.

Table 8-1 shows the TSAPI Call Events that the MERLIN LEGEND and MERLIN
MAGIX switches provide. Note that the MERLIN LEGEND and MERLIN MAGIX
switches do not provide all of the TSAPI Call Events.

Call Events

8-2 Issue 2.2 Programmer’s Guide

Table 8-1. MERLIN LEGEND and MERLIN MAGIX CTI Support for TSAPI
Call Events

 TSAPI Call Events -
MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX Release 1.0

 CSTACallClearedEvent
√ CSTAConferencedEvent
√ CSTAConnectionClearedEvent
√ CSTADeliveredEvent
 CSTADivertedEvent

√ CSTAEstablishedEvent
 CSTAFailedEvent

√ CSTAHeldEvent
√ CSTANetworkReachedEvent
 CSTAOriginatedEvent
 CSTAQueuedEvent

√ CSTARetrievedEvent
√ CSTAServiceInitiatedEvent
√ CSTATransferredEvent

 TSAPI Call Events - MERLIN MAGIX (Release 1.5 and later)
 CSTACallClearedEvent

√ CSTAConferencedEvent
√ CSTAConnectionClearedEvent
√ CSTADeliveredEvent
√ CSTADivertedEvent
√ CSTAEstablishedEvent
 CSTAFailedEvent

√ CSTAHeldEvent
√ CSTANetworkReachedEvent
 CSTAOriginatedEvent

√ CSTAQueuedEvent
√ CSTARetrievedEvent
√ CSTAServiceInitiatedEvent
√ CSTATransferredEvent

! CAUTION:
When designing an application, be aware of the event parameters that
the MERLIN LEGEND and MERLIN MAGIX switches provide. The
MERLIN LEGEND and MERLIN MAGIX switches do not provide all of
the optional TSAPI event parameters. Note that the MERLIN LEGEND
and MERLIN MAGIX switches do not provide the optional local
connection state information. The event manual pages list all of the
TSAPI parameters and indicate those that the MERLIN LEGEND and
MERLIN MAGIX switches provide.

General Call Event Feature Interactions

Programmer’s Guide Issue 2.2 8-3

Many of the call events contain mandatory TSAPI parameters that identify
devices. In some situations the device may be a trunk or a Calling Group queue.

n When the MERLIN LEGEND and MERLIN MAGIX switches supply a trunk
facility identifier in a call event, the identifier takes the form of the letter “T”
followed by the facility identifier for the trunk (for example, “T801”.)

n When the MERLIN MAGIX switch supplies a Calling Group queue identifier
in a call event, the identifier takes the form of the letter “Q” followed by the
extension number for the Calling Group (for example, “Q770”.)

General Call Event Feature
Interactions

There are several important attributes of event reporting that application
developers must consider:

n Programming for “busy” conditions (Chapter 2);

n Bridging and Shared Facility Interactions (summarized below and covered
more thoroughly in Chapter 2);

n Events that flow when a call is manually originated (below).

Bridging, Coverage and Shared Facility
Interactions

For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5), Call Event reporting does not track activity on, or interaction with,
bridged, coverage or shared appearances. An application monitoring a device
where a call alerts on a monitored station and is then answered using a shared
facility or cover button from another station is treated as cleared from the station
where it initially alerted. Application designers should be aware that interaction
with a shared facility may remove such a connection from their control. Whenever
this happens, the application receives a CSTAConnectionClearedEvent.

Beginning with MERLIN MAGIX Release 2.0, Call Event reporting will track
activity on all buttons except Shared System Access buttons. A call that alerts on
a Cover, DFT or DPT button will receive events, including the
CSTADeliveredEvent. However, a call that alerts at an SA button on a
monitored station and is then answered using a Shared System Access button
from another station is treated as cleared from the station where it initially alerted,
as in earlier MERLIN LEGEND and MERLIN MAGIX releases.

Chapter 2 provides additional details and Chapter 12 provides example event
flows.

Call Events

8-4 Issue 2.2 Programmer’s Guide

Call Event Distribution in MERLIN
MAGIX Release 2.0 and later

In general the rules for distributing call events are:

n If a device is a participant on a call, then a monitor for that device will
receive events for that call with the following exceptions DFT and DPT
Buttons:

 A device monitor for a station where a call appears on a DFT or
DPT (Pool) button will generally not receive events for call activity
at other DFT or DPT buttons.

 A device monitor for a station that has received a call as a result of
coverage will generally not receive events for call activity at other
coverage receivers.

(These two exceptions were implemented to prevent an application from
being bombarded with events that were probably not relevant to the device
monitor.)

n If a device appears as event parameter value, then a monitor for that
device will receive the event.

Beginning with MERLIN MAGIX Release 2.0, a CSTADeliveredEvent is
generated when a call is delivered to a DFT or DPT button. When there are
multiple events generated for a particular call, a monitored station will receive the
CSTADeliveredEvent for its own station. When the call is answered at a station,
all other monitored extensions with an appearance of that call will receive a
CSTAConnectionClearedEvent for the appearance for their device and not
other devices. When the call is answered, the answering station will receive a
CSTAEstablishedEvent for itself, but this will not be propagated to other
monitored stations with the call appearance.

Coverage Buttons

Beginning with MERLIN MAGIX Release 2.0, a CSTADeliveredEvent when a
call is delivered to Cover buttons. When the sender is monitored, it will receive its
own CSTADeliveredEvent and the CSTADeliveredEvent for all receivers. A
receiver will only receive a CSTADeliveredEvent for itself and not the other
receivers.

n If the far end disconnects, the sender will receive a CSTAConnection-
ClearedEvent for itself and all receivers. A receiver will receive a
CSTAConnectionClearedEvent for itself and not other receivers.

n If the call is answered at a receiver, the answering receiver and sender will
receive a CSTAEstablishedEvent, but this will not be propagated to other
receivers. All other receivers will receive one CSTAConnectionCleared-
Event for the call clearing from their button. This event will also go to the
sender.

Event Page Format

Programmer’s Guide Issue 2.2 8-5

n If the call is answered at the sender, the sender will receive a
CSTAEstablishedEvent. Receivers will receive one CSTAConnection-
ClearedEvent for their device. The sender will also receive the
CSTAConnectionClearedEvent for each receiver.

When forwarding is active, both the forward-from and in MERLIN MAGIX Release
2.0, Original Caller Information (OCI) is provided in the CSTADeliveredEvent,
CSTAEstablishedEvent and CSTAQueuedEvent. The rules for the parameter
generation for these events are similar. These parameters appear in the
privateData field of the events.

Event Page Format

The following pages in this chapter present the TSAPI call events that the
MERLIN LEGEND and MERLIN MAGIX switches provide to applications. Each
TSAPI event description contains the following sections, as appropriate:

Event Name and Description

The event name appears first on the pages describing that event. A description
of that event immediately follows the name.

Event Parameters

A table lists the event parameters and summarizes their use.

Event Scenario Diagram

A figure shows the devices, connections, and calls before and after the event. In
the diagrams, squares are devices and are labeled D1, D2, etc. Circles are calls
and are labeled C1, C2, etc. Lines are connections and their label identifies the
device and the call (for example D1C2 would be the connection of device D1 to
call C2). The diagrams use the connection state symbols shown in Table 8-2.

Call Events

8-6 Issue 2.2 Programmer’s Guide

Table 8-2. Symbols Used in Event Scenario Figures

Symbol Connection State
i Initiated (the extension is hearing dial tone, is in the process

of dialing, or has completed dialing but the call has not yet
originated)

a Alerting (often audible ringing, but not necessarily)

c Connected

h Held

ht, hc Held for Transfer, Held for Conference - these used when
necessary to distinguish from Held

q Queued

* Any non-null state (the call appears at the device, and may
be connected, held, held-for-conference, held-for-transfer)

Event Causes

This section lists call event causes that may be present in the event giving the
cause of the event. Items in all capitals are #defines from the TSAPI header files
acs.h, acsdefs.h, csta.h, and cstadefs.h.

Event Syntax

This section contains C coding information for the event.

Private Data Syntax

This section contains C coding information for any private data that the event may
carry. This section is not present if the event may not carry private data.

Important Feature Interactions

This section describes important interactions with the MERLIN LEGEND and/or
MERLIN MAGIX switch features that produce the event.

CSTAConferencedEvent

Programmer’s Guide Issue 2.2 8-7

CSTAConferencedEvent

The CSTAConferencedEvent indicates that station confController has
conferenced a new connection onto a call. Specifically, the confController
station had the connection primaryOldCall on hold and the connection
secondaryOldCall active and then conferenced those two connections together.
The MERLIN LEGEND and MERLIN MAGIX switches provide the
CSTAConferencedEvent event when a conference operation occurs at any
facility type on a monitored station.

In a typical conference call scenario, the confController places the
primaryOldCall on hold-for-conference, then originates a call (the
secondaryOldCall) to addedParty, and then conferences the calls.

Event Parameters

Table 8-3. CSTAConferencedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_CONFERENCED

monitorCrossRefID event occurred on this monitor

primaryOldCall connection that was held for conference

secondaryOldCall connection that was active for conference

confController conferencing device

addedParty Device being added. If the deviceID for the
device being added is not known, then the
deviceIDStatus component has a value of
ID_NOT_KNOWN.

conferenceConnections List of connections on the conference call. Each
connection contains a device identifier and a call
identifier.

localConnectionInfo CS_NONE, none provided

cause reason for Conferenced event

privateData NULL, not used for this event

addedParty is a device identifier giving the device added to the call. When the
newly added party is a station, addedParty contains the extension for that
station. When the newly added party is a trunk connection, addedParty contains
the MERLIN LEGEND or MERLIN MAGIX switch Facility Identifier for the trunk or
the dialed digits. The MERLIN LEGEND switch always supplies the trunk
identifier or dialed digits, never a pool or DGC identifier.

Call Events

8-8 Issue 2.2 Programmer’s Guide

conferenceConnections provides applications with information so that they may
continue to track calls when call identifiers change as conferencing merges calls
together. When a trunk connection is a party to the conference, the
conferenceConnections contains the MERLIN LEGEND or MERLIN MAGIX
switch Facility Identifier for the trunk, the dialed digits, ICLID or DNIS information.
The MERLIN LEGEND and MERLIN MAGIX switches always supply the trunk
identifier, never a pool or DGC identifier. Each conferenceConnections list
member contains:

n a device identifier for a party on the call,

n the connection identifier for the call at that device after the conference
occurred.

 NOTE:
An application should always check conferenceConnections to track
connection and call identifiers as conferences occur. Currently, in MERLIN
LEGEND and MERLIN MAGIX CTI, a conference of the primaryOldCall
and the secondaryOldCall always results in the secondaryOldCall being
the call identifier for the resulting conference call; there is no guarantee that
this will continue to be true in future releases. In addition, not all switches
operate in this manner, so a switch-independent application must use the
conferenceConnections to track connection identifiers and call identifiers.

Event Scenario Diagram

Figure 8-1 illustrates one possible CSTAConferencedEvent scenario.

Before After

D1 D2 C1

h c

D3 C2 c, a c

D1 is confController
C1 is primaryOldCall

C2 is secondaryOldCall

D1 D2 c

D3 C2 c, a c

D3 is addedParty

Figure 8-1. CSTAConferencedEvent Scenario

CSTAConferencedEvent

Programmer’s Guide Issue 2.2 8-9

Event Causes

Table 8-4. CSTAConferencedEvent Causes

EC_NEW_CALL The MERLIN LEGEND and MERLIN MAGIX switches
provide EC_NEW_CALL on all CSTAConferencedEvents.

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAConferencedEvent_t conferenced;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAConferencedEvent_t {
 ConnectionID_t primaryOldCall;
 ConnectionID_t secondaryOldCall;
 SubjectDeviceID_t confController;
 SubjectDeviceID_t addedParty;
 ConnectionList_t conferenceConnections;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTAConferencedEvent_t;

Call Events

8-10 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Barge-In
Barge-In is a form of bridging operation and does not generate a
CSTAConferencedEvent. A station that has Barged-In prior to a conference
operation is not included in the connection list.

Bridging
Bridging operations of any type do not generate a CSTAConferencedEvent.

Call Screening
An application monitoring a station will not receive a CSTAConferencedEvent
when a Call Screener joins an existing call.

A station that is screening a call prior to a conference operation is not included in
the connection list.

Coverage
When an alerting call to a Coverage sender is added to a conference, the
extension number of the Coverage sender is included in Conference Connections
List. The extension numbers of the Coverage receivers where the call is also
alerting are not included in the Conference Connections List.

Group Calling (DGC)
When secondaryOldCall is a call to a Calling Group and the call is delivered
directly to a Calling Group member (without being queued), the addedParty
parameter in the CSTAConferencedEvent will contain the extension of the
Calling Group member.

A call in a Calling Group queue may not be conferenced.

Networking
An application monitoring the conference originator when the added party is on
another MERLIN LEGEND or MERLIN MAGIX switch in the private network will
receive a CSTAConferencedEvent identifying the connections on the
conference call.

An application monitoring the added party when the conference originator is on
another MERLIN LEGEND or MERLIN MAGIX switch in the private network, will
receive a CSTADeliveredEvent that does not contain Original Call Information.
The application will not receive a CSTAConferencedEvent.

CSTAConferencedEvent

Programmer’s Guide Issue 2.2 8-11

Pool
When a user conferences with a call on a Pool button, the addedParty parameter
in the CSTAConferencedEvent will always contain an individual trunk identifier
or dialed digits for an outgoing call, not the Pool extension. Similarly, the
conferenceConnections parameter contains an individual trunk identifier, not
the Pool extension.

QCC
When user conferences a QCC onto a call, the conferenceConnections
parameter in the CSTAConferencedEvent will not contain the QCC.

Service Observing
An application monitoring a station that is being observed will not receive a
CSTAConferencedEvent when the service observer joins an existing call.

A station that has observed a device prior to a conference operation is not
included in the connection list.

Call Events

8-12 Issue 2.2 Programmer’s Guide

CSTAConnectionClearedEvent

The CSTAConnectionClearedEvent indicates that station releasingDevice
disconnected from droppedConnection.

n For MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5), so long as a call remains at one SA button at a
monitored device, the switch does not send this event for the call (with re-
spect to the monitored device). The switch will send the CSTA-
ConnectionClearedEvent only after call clears from all the SA buttons.
The CSTAConnectionClearedEvent is sent even though the call may
continue to appear at the device on some other button type such as a
DFT, DPT or Cover button.

n For Conference calls, if a user at a monitored station creates a three-way
conference call (the call appears on two SA buttons) and one far-end
devices drops from the call, the application monitoring the Conference
originating station will receive a CSTAConnectionClearedEvent only for
the device that dropped from the call. The monitoring application will
receive another CSTAConnectionClearedEvent when the monitored
device drops from the call.

In MERLIN LEGEND and MERLIN MAGIX CTI, a connection ID contains a callID
that uniquely identifies a call within the switch. Similarly, a deviceID uniquely
identifies a device within the switch. Since droppedConnection is a
connectionID (containing both callID and deviceID), the releasingDevice
parameter is redundant. However, both of these parameters are mandatory in
CSTA, so they appear in the event.

 NOTE:
Not all switches use static, unique device identifiers. Use the
releasingDevice parameter, not the deviceID within the
droppedConnection parameter to obtain the deviceID of the device that
has been disconnected. This will assist in making the application switch-
independent.

Prior to MERLIN MAGIX Release 2.2, the MERLIN LEGEND and MERLIN
MAGIX CTI implementations do not generate a CSTAConnectionClearedEvent
when a trunk drops off of a call. If a trunk drop results in a call being torn down at
a monitored station, then the MERLIN LEGEND or MERLIN MAGIX switch will
generate a CSTAConnectionClearedEvent when the connection is cleared at
the monitored station.

Beginning with MERLIN MAGIX Release 2.2, a CSTAConnectionClearedEvent
is provided when a trunk with disconnect supervision drops off of a conference
call, or when the Selective Drop feature is used to drop an external party from a
conference call.

CSTAConnectionClearedEvent

Programmer’s Guide Issue 2.2 8-13

 NOTE:
The cstaGetAPICaps query does not distinguish between providing this
event for local monitored stations and trunk endpoints. The
cstaGetAPICaps response indicates that the MERLIN LEGEND and
MERLIN MAGIX switches provide this event. Programmers must
understand the limitation in the cstaGetAPICaps response and not
program applications to expect a CSTAConnectionClearedEvent for the
far end on an outbound trunk call.

 NOTE:
In this chapter, the paragraph titled “Call Event Distribution in MERLIN
MAGIX Releases 2.0 and later” explains how the CSTAConnection-
ClearedEvent is generated for calls appearing on multiple stations.

The MERLIN LEGEND and MERLIN MAGIX switches will send a CSTA-
ConnectionClearedEvent for a monitored station from any facility type except a
Loop button.

Event Parameters

Table 8-5. CSTAConnectionClearedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_CONNECTION_CLEARED

monitorCrossRefID event occurred on this monitor

droppedConnection connection that cleared (contains deviceID and
callID)

releasingDevice device where connection cleared

localConnectionInfo CS_NONE, none provided

cause reason for Connection Cleared event

privateData (private data version 2 only) may contain an
account code

Beginning with MERLIN MAGIX Release 2.1, it is recommended that applications
obtain account code information using the CSTACallInfoEvent rather than the
Private Data in the CSTAConnectionClearedEvent.

Call Events

8-14 Issue 2.2 Programmer’s Guide

Event Scenario Diagram

Figure 8-2 illustrates one possible CSTAConnectionClearedEvent scenario.

Before After

D1 D2 c

D3 C1 c c

D1 is releasingDevice

D1 D2 c

D3 C1 c

D1C1 is droppedConnection

Figure 8-2. CSTAConnectionClearedEvent Scenario

Event Causes

Table 8-6. MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) CSTAConnectionClearedEvent Causes

EC_CALL_CANCELLED The connection has dropped from the monitored
device and the monitored device is not on hook.

EC_NONE The connection has dropped at the monitored
device and the monitored device is on hook.

Table 8-7. MERLIN MAGIX Release 2.0 and Later
CSTAConnectionClearedEvent Causes

EC_CALL_CANCELLED Remote end hangs up.
EC_CALL_NOT_ANSWERED The connection is a refused Calling Group call

(i.e., the call was alerting at a Calling Group
member but was returned to the queue), or was
redirected from a station via the
cstaDeflectCall() service.

EC_NONE The user hangs up and the monitored device is
on hook.

EC_SILENT_MONITOR The connection has dropped from a monitored
Call Screener or Service Observer on the call.

CSTAConnectionClearedEvent

Programmer’s Guide Issue 2.2 8-15

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {

 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAConnectionClearedEvent_t connectionCleared;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAConnectionClearedEvent_t {
 ConnectionID_t droppedConnection;
 SubjectDeviceID_t releasingDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTAConnectionClearedEvent_t;

Private Data Versions 2 and 3 Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
MERLIN MAGIX private data header files (mlpriv.h and mlpdefs.h) for a complete
description.

typedef struct {
 MLEventType_t eventType; /* ML_CONNECTION_CLEARED */
 union {
 /* Only the pertinent union element is shown */
 MLConnectionClearedEvent_t connectionClearedEvent;
 } u;
} MLEvent_t;

typedef struct MLConnectionClearedEvent_t {
 char accountCode[17];
} MLConnectionClearedEvent_t;

Call Events

8-16 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Once the application receives a CSTAConnectionClearedEvent for a call at a
device, the cstaAnswerCall() service may not be used to answer another
appearance of that call at the device.

Account Code
An application monitoring an extension that has made or received an external call
(i.e. one involving a trunk) where an account code has been entered will receive
the account code (beginning with Private Data version 2) in the
CSTAConnectionClearedEvent.

Beginning with MERLIN MAGIX Release 2.1, it is recommended that applications
obtain account code information using the CSTACallInfoEvent rather than the
Private Data in the CSTAConnectionClearedEvent.

Call Pickup
Beginning with MERLIN MAGIX Release 1.5, an application monitoring an
extension from which a call is picked up will receive a CSTAConnectionCleared-
Event for the call.

An application monitoring an extension that performs a call pick (extension, line or
group) will receive a CSTAConnectionClearedEvent for the “call” that was used
to invoke the Pickup feature.

Call Screening
A device monitor for the extension of a Call Screener will receive a CSTA-
ConnectionClearedEvent when the Call Screener drops off of a screened call.
The cause in the event will be EC_SILENT_MONITOR. Device monitors for other
extensions on the call will not receive this event.

An application monitoring a Voice Mail port will receive a CSTAConnection-
ClearedEvent when a Call Screener joins the call as a regular call participant,
causing the Voice Mail port to be dropped from the call. The cause in the event
will be EC_CALL_CANCELLED.

Conferencing
An application monitoring an extension with a connection to a conference call will
receive a CSTAConnectionClearedEvent when an internal conference
participant drops from the conference.

An application monitoring an extension with a connection to a conference call that
is not the conference originator will receive a CSTAConnectionClearedEvent
when the monitored extension drops from the conference.

CSTAConnectionClearedEvent

Programmer’s Guide Issue 2.2 8-17

Prior to MERLIN MAGIX Release 2.2, an application monitoring an extension with
a connection to a conference call will not receive a CSTAConnectionCleared-
Event when an external conference participant drops from the conference.

Beginning with MERLIN MAGIX Release 2.2, an application monitoring an
extension with a connection to a conference call will receive a CSTAConnection-
ClearedEvent when an external conference participant drops from the
conference if the trunk used by the external conference participant provides
disconnect supervision.

The conference originator’s station for a multi-party conference call will have
appearances of that conference call on multiple buttons. An application
monitoring the conference originator’s station will receive a
CSTAConnectionClearedEvent when the last appearance for the conference
call clears.

Coverage
When a call is alerting on an SA button at a monitored station, and another station
answers that call using a COVER button, then an application monitoring the
station where the call is alerting on the SA button receives a CSTAConnection-
ClearedEvent.

Beginning with MERLIN MAGIX Release 2.0, when a call is alerting on a COVER
button at a monitored station, and an SA or COVER button at some other station
answers the call, the call is cleared from the COVER button and an application
monitoring the station with the COVER button receives a CSTAConnection-
ClearedEvent.

When an application is monitoring a Cover sender, the application will receive call
events for the Cover sender as well as call events for each of the Coverage
receivers. An application monitoring a Coverage receiver will only receive call
events for the Coverage receiver.

Delay Announcement Unit
Beginning in MERLIN MAGIX Release 2.0, when a call that is alerting at a
monitored Delay Announcement Unit is returned to the queue or is redirected to a
Calling Group member, an application monitoring the Delay Announcement Unit
receives a CSTAConnectionClearedEvent with a cause of
EC_CALL_NOT_ANSWERED.

DFT/DPT
When a call alerts on an SA button at a monitored station, and a DFT or DPT
button at some other station answers the call, then an application monitoring
either the station with the SA button or the station with the DFT/DPT button
receives a CSTAConnectionClearedEvent.

Call Events

8-18 Issue 2.2 Programmer’s Guide

Beginning with MERLIN MAGIX Release 2.0, when a call alerts on a DFT or DPT
button at a monitored station, and the call is answered at another station on a
supported button, then the application monitoring the station with the DFT or DPT
button receives a CSTAConnectionClearedEvent.

When a call appears at an extension on a DFT or DPT, there are cases where
the call can also appear at the extension on other buttons (SA button or COVER
button).

When a call alerts on an SA button of a monitored station, and also alerts on a
DFT or DPT button at the same station two CSTADeliveredEvents are
generated for the same call. When the call is eventually cleared at the station
only one CSTAConnectionClearedEvent is generated.

Direct Voice Mail
When an external call is transferred to a station’s mailbox using Direct Voice Mail,
the CSTATransferredEvent contains the extension number of the station in the
list of transferred connections even though the station is not on the call. A
CSTAConnectionClearedEvent is then generated to indicate that the station is
not on the call.

Drop
An application monitoring an extension with a connection to a conference call will
receive a CSTAConnectionClearedEvent when the Selective Drop feature is
used to drop an internal conference participant from the call.

Prior to MERLIN MAGIX Release 2.2, an application monitoring an extension with
a connection to a conference call will not receive a CSTAConnectionCleared-
Event when the Selective Drop feature is used to drop an external conference
participant from the call.

Beginning with MERLIN MAGIX Release 2.2, an application monitoring an
extension with a connection to a conference call will receive a CSTAConnection-
ClearedEvent when the Selective Drop feature is used to drop an external
conference participant from the call.

Forward/Follow Me
Beginning with MERLIN MAGIX Release 2.0, when a forwarded call is alerting at
the forwarded-from station, and the forward-to station connects to that call, the
call is cleared from the forwarded-from station and an application monitoring any
station on the call receives a CSTAConnectionClearedEvent.

Beginning with MERLIN MAGIX Release 2.0, when a forwarded call is alerting at
the forward-to station, and the forwarded-from station answers the call, the call is
cleared from the forwarded-to station and an application monitoring any station on
the call receives a CSTAConnectionClearedEvent.

CSTAConnectionClearedEvent

Programmer’s Guide Issue 2.2 8-19

Group Calling (DGC)
Beginning with MERLIN MAGIX Release 1.5, when a call is in a monitored Calling
Group queue and the far end disconnects, then the application monitoring the
queue receives a CSTAConnectionClearedEvent. The releasingDevice in the
event is the Calling Group number.

Beginning with MERLIN MAGIX Release 2.0, when a call that had been alerting
at a monitored Calling Group member returns to the queue (i.e., it is a refused
call) or is redirected through the cstaDeflectCall() service, an application
monitoring the Calling Group member receives a CSTAConnectionCleared-
Event with a cause of EC_CALL_NOT_ANSWERED.

QCC
An application cannot monitor a QCC. The MERLIN LEGEND and MERLIN
MAGIX switches do not provide the CSTAConnectionClearedEvent for QCC
facilities.

Service Observing
In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) environment, an application monitoring any station participating in an
observed call will receive a CSTAConnectionClearedEvent when the observer
drops off the call.

Beginning with MERLIN MAGIX Release 2.0, only an application monitoring the
service observer will receive a CSTAConnectionClearedEvent when the
observer drops off the call. The cause in the CSTAConnectionClearedEvent
will be EC_SILENT_MONITOR.

An application monitoring the station of a service observer will receive a CSTA-
ConnectionClearedEvent for the call associated with activating the Service
Observing feature, and will also receive a CSTAConnectionClearedEvent
whenever an observed call is disconnected.

Shared Facility Interactions
In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) environment, when a call alerting on an SA button of a monitored
station is answered on some shared facility (SSA, BA, Cover, DFT, etc.), the
monitoring application receives a CSTAConnectionClearedEvent for the call.

An application will not receive a CSTAConnectionClearedEvent when a call has
been answered at a DFT, DPT or cover button.

Beginning with MERLIN MAGIX Release 2.0, when a call alerting on an SA,
Cover, DFT, or DPT button of a monitored station is answered on some shared
facility (SSA, BA, Cover, DFT, etc.) at another station, the monitoring application
receives a CSTAConnectionClearedEvent for the call.

Call Events

8-20 Issue 2.2 Programmer’s Guide

CSTADeliveredEvent

The CSTADeliveredEvent indicates that a call (possibly a consultation call) is
alerting at a station.

In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, the switch only provides a CSTADeliveredEvent for a call
alerting on an SA button on a station. Beginning with MERLIN MAGIX Release
2.0, the switch provides a CSTADeliveredEvent for a call alerting at an SA,
Cover, DFT or DPT button on a station.

Event Parameters

Table 8-8. CSTADeliveredEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_DELIVERED

monitorCrossRefID event occurred on this monitor

connection delivered connection (contains deviceID and callID)

alertingDevice device where connection delivered

callingDevice the calling device may contain a number identifying
the calling party number. See below for details.

calledDevice the called device may contain a number identifying
the called party number. See below for details.

lastRedirectionDevice For MERLIN MAGIX Release 2.0 and later, the last
redirection device for the call, when applicable. See
below for details.

localConnectionInfo CS_NONE, not provided

cause reason for Delivered event (See Tables 8-9, 8-10)

privateData may contain call prompting digits, original call
information, and/or (private data version 2 and later)
the trunk identifier for the call

The callingDevice parameter contains the ANI/ICLID for an external party (when
the trunk provides it) or the extension for a local party. CSTA permits values
indicating “unknown” for certain CSTADeliveredEvent parameters in certain
circumstances. When an incoming call arrives on a trunk that does not provide
ANI/ICLID, the callingDevice has a deviceIDStatus of ID_NOT_KNOWN.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-21

! IMPORTANT:
For a CSTADeliveredEvent event to provide the calling number for an
incoming external call, the external call must arrive on either:

§ PRI/BRI facilities provisioned to provide ANI.

§ trunks that have ICLID-Delay applied by the switch. Typically a call
on a facility alerting into a Calling Group would be delayed being
delivered to an extension until the ICLID information arrived.

When an incoming call alerts on a PRI/BRI trunk provisioned to provide DNIS, the
calledDevice parameter contains the PRI Called Number. Prior to MERLIN
MAGIX Release 2.1, the calledDevice parameter matches the alertingDevice
parameter for all other cases. Note that the parameter does not necessarily
indicate the device called by the callingDevice.

Beginning with MERLIN MAGIX Release 2.0, a CSTADeliveredEvent may be
delivered to an application for outgoing calls. This will happen only if the call is a
PRI call involving all digital lines. The switch populates the TSAPI calledDevice
parameter to identify the device being called. An application monitoring an
extension where the user makes a PRI call will receive a CSTADeliveredEvent
when the switch receives a message that the far-end is alerting. The
calledDevice will be the dialed number, which may or may not match the alerting
device number. All other outgoing calls do not generate a CSTADeliveredEvent.

Beginning with MERLIN MAGIX Release 2.1, the calledDevice parameter for
incoming external calls is populated with one of the following:

n the called number from the ISDN setup message for calls over PRI
facilities

n a deviceIDStatus of ID_NOT_KNOWN for DFT/DPT calls over non-PRI
facilities

n the Calling Group Queue for Calling Group calls arriving non-PRI facilities
and where the facilities do not also terminate on DFT/DPT buttons

n a deviceIDStatus of ID_NOT_KNOWN for DGC calls over non-PRI
facilities that terminate on DFT/DPT buttons

For intercom calls, the calledDevice parameter is populated with one of the
following:

n The called extension number for a simple station to station call

n The forwarding station for forwarded calls including forwarded on busy

n The coverage sender for coverage calls including Calling Group coverage

n The Calling Group Queue for DGC calls

n The station extension where a call is being picked up from, using the call
pickup feature

Call Events

8-22 Issue 2.2 Programmer’s Guide

As a call redirects (coverage, forwarding, etc.) from its original destination to other
endpoints, the calledDevice for an incoming PRI or BRI call remains static, and
the alertingDevice parameter contains the extension of the device where the call
is alerting.

Beginning with MERLIN MAGIX Release 2.1, the calledDevice for all incoming
calls remains static.

Prior to MERLIN MAGIX Release 2.0, switches do not populate the TSAPI last-
RedirectionDevice parameter. This parameter always has the
deviceIDStatus component set to ID_NOT_KNOWN.

In MERLIN MAGIX Release 2.0, the switch populates the TSAPI last-
RedirectionDevice parameter as follows:

n If the call is a DGC call alerting at a station that is a Calling Group
member, the lastRedirectionDevice contains the number of the Calling
Group of which the station is a member. The Calling Group for the call and
the alerting station may be different.

n Otherwise,

 If the call is alerting at a Cover button, the lastRedirectionDevice
contains the extension of the coverage sender.

 If the call is an internal call alerting at a forward-to station, the last-
RedirectionDevice contains the forward-from extension. The
MERLIN MAGIX switch does not provide lastRedirectionDevice
the for a call forwarded from a DFT or DPT button.

 Otherwise, the deviceIDStatus component has a value of
ID_NOT_KNOWN

Beginning with MERLIN MAGIX Release 2.1, the switch populates the TSAPI
lastRedirectionDevice parameter as follows:

n If the call is a DGC call alerting at a station that is a Calling Group
member, the lastRedirectionDevice contains the number of the Calling
Group of which the call came into Otherwise,

 If the call is alerting at a Cover button, the lastRedirectionDevice
contains the extension of the coverage sender.

 If the call is internal call alerting at a forward-to station, the last-
RedirectionDevice contains the forward-from extension. The
MERLIN MAGIX switch does not provide lastRedirectionDevice
the for a call forwarded from a DFT or DPT button.

 Otherwise, the deviceIDStatus component has a value of
ID_NOT_KNOWN

Prior to MERLIN MAGIX Release 2.0, the TSAPI cause parameter is always
populated with EC_NEW_CALL.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-23

Beginning with MERLIN MAGIX Release 2.0, the switch populates the TSAPI
cause parameter (the precedence is the presented order) as follows:

n If the call is a DGC call alerting at a station that is a Calling Group
member, the cause is EC_REDIRECTED.

n If the call is a transfer, park or camp-on return call, the cause is
EC_RECALL.

n If the call is alerting at a Cover button, the cause is EC_CALL_FORWARD.

n If the call is alerting at a forward-to station (for non-DFT/DPT calls), the
cause is EC_CALL_FORWARD.

n If the call is an outbound PRI call, the cause is EC_NONE.

n If the call is alerting as a result of a Voice Announced transfer the cause is
EC_TRANSFER.

n For all other cases, the cause is EC_NEW_CALL.

Beginning with MERLIN MAGIX Release 2.1 the cause parameter is populated
the same as for MERLIN MAGIX Release 2.0 except that the cause is
EC_CALL_FORWARD_ALWAYS if the call is alerting at a forward-to station for non-
DFT/DPT calls (MERLIN MAGIX Release 2.0 uses EC_CALL_FORWARD).

The CSTADeliveredEvent may contain private data that carries:

n Any collected digits that have been associated with the call – If the call is
an incoming call and has been routed through a VMI port prompted digits
may have been collected

n Information about the original call – When an application uses
cstaConsultationCall() to extend a call, information about the original call
is provided in private data. This “original call information” about the transfer
source 1 appears in any CSTADeliveredEvents for the consultation call.
An application at the desktop receiving the consultation call can use the
original calling number, original PRI Called Number (DNIS), or original call
prompter digits to pop an appropriate screen. See the section “MERLIN
LEGEND and MERLIN MAGIX Private Data Libraries” in Chapter 2.

Beginning with private data version 2 and MERLIN MAGIX Release 2.0, private
data in the CSTADeliveredEvent may also contain the trunk identifier (e.g.
“T802”) associated with an external call.

1 The MERLIN LEGEND and MERLIN MAGIX switches use the following terms in a transfer

scenario: When a call is being transferred, the party doing the transferring is the transfer
originator. The party being transferred is the transfer source. The party receiving the transferred
call is the transfer destination. Thus, the activeCall parameter in a cstaConsultationCall() is a
connection at the transfer originator for the call at the transfer source. The calledDevice
parameter in a cstaConsultationCall specifies the transfer destination.

Call Events

8-24 Issue 2.2 Programmer’s Guide

In MERLIN LEGEND and MERLIN MAGIX CTI, a connection ID contains a callID
that uniquely identifies a call within the switch. Similarly, a deviceID uniquely
identifies a device within the switch. Since connection is a connectionID
(containing both callID and deviceID), the alertingDevice parameter is
redundant. However, both of these parameters are mandatory in CSTA so they
must be present.

 NOTE:
Not all switches use static, unique device identifiers. Use the
alertingDevice parameter, not the deviceID within the connection
parameter to obtain the deviceID for the alerting device. This will assist in
making the application switch-independent.

 NOTE:
The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) switches do not provide the CSTADeliveredEvent
event for the outbound leg of a call, leaving the switch on a trunk.2 Note
that the cstaGetAPICaps() query does not distinguish between providing
this event for a local monitored station and a trunk endpoint. The
cstaGetAPICaps() response indicates that the MERLIN LEGEND and
MERLIN MAGIX switches provide this event. Programmers must
understand the limitation in the cstaGetAPICaps() response and not
program applications to expect a CSTADeliveredEvent for the far end on
an outbound trunk call.

Beginning with MERLIN MAGIX Release 2.0, the switch will provide the
CSTADeliveredEvent event for the outbound leg of a call, leaving the
switch on a PRI trunk when the switch receives a message that the far-end
is ringing. (This requires that the call be routed only on digital facilities.)

 NOTE:
The CSTADeliveredEvent event is not generated for Calling Group calls
that go over the private network.

2 PRI trunking provides the switch with signaling information that the switch can use to generate

this event. Generation of a Delivered event in this circumstance is provided beginning with
MERLIN MAGIX Release 2.0.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-25

Event Scenario Diagram

Figure 8-3 illustrates one possible CSTADeliveredEvent scenario.

Before After

D1 D2 c C1

D1 D2 c C1 a

D1 is alertingDevice
D1C1 is connection

Figure 8-3. CSTADeliveredEvent Scenario

Event Causes

Table 8-9. MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) CSTADeliveredEvent Causes

EC_NONE The MERLIN LEGEND (Release 5.0 and later) and
MERLIN MAGIX (Releases 1.0 and 1.5) switches
provide this cause in all CSTADeliveredEvents.

Table 8-10. MERLIN MAGIX Release 2.0 and 2.1 CSTADeliveredEvent Causes

EC_NEW_CALL The MERLIN MAGIX Release 2.0 and 2.1
switches provides this cause in all cases
except those specified below:

EC_CALL_FORWARD_ALWAYS the call alerting at alertingDevice has been
forwarded via the Call Forwarding feature
(Beginning with MERLIN MAGIX Release 2.1)

EC_CALL_FORWARD the call alerting at alertingDevice has been
forwarded via the Call Forwarding (MERLIN
MAGIX Release 2.0) or Coverage feature

EC_RECALL the call alerting at alertingDevice is a
transfer, park or camp-on return call

EC_REDIRECTED alertingDevice is a Calling Group member
and the call is a DGC call

EC_NONE for outgoing digital PRI calls

Call Events

8-26 Issue 2.2 Programmer’s Guide

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTADeliveredEvent_t delivered;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTADeliveredEvent_t {
 ConnectionID_t connection;
 SubjectDeviceID_t alertingDevice;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 RedirectionDeviceID_t lastRedirectionDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTADeliveredEvent_t;

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-27

Private Data Parameters

Table 8-11. CSTADeliveredEvent Private Data Parameters

userEnteredCode Specifies the code/digits that may have been entered
by the caller through the Collected Digits feature. If
the userEnteredCode type is set to “ML_UE_NONE”,
no Collected Digits are provided with this event. If the
userEnteredCode type is set to
“ML_CALL_PROMPTER,” userEnteredCode
Collected Digits are provided with this event. See the
MERLIN LEGEND Advanced Communications System
Feature Reference or MERLIN MAGIX Integrated
System Feature Reference (in the CTI Link Section)
for information on how to set up the switch and
application for collecting userEnteredCode through
the Collected Digits feature.

Call Events

8-28 Issue 2.2 Programmer’s Guide

originalCallInfo Specifies the original call information. Note that
information is not repeated in the originalCallInfo if it
is already reported in the CSTA service parameters.
For example, the callingDevice and calledDevice in
the originalCallInfo will not be set if the
callingDevice and the calledDevice in the CSTA
service parameters are the original calling and called
devices. The callingDevice and calledDevice in the
originalCallInfo will be set only when the original
devices are different from the most recent
callingDevice and calledDevice.

 NOTE:

For the Delivered Event corresponding to the newCall
of a Consultation Call, the originalCallInfo is taken
from the activeCall specified in the Consultation Call
request. Thus the application can pass the original call
information between two calls. The calledDevice of
the Consultation Call must reside on the same switch
and must be monitored via the same Tserver.

n reason — the reason for the originalCallInfo.
The following reasons are supported.

ML_OR_NONE — no originalCallInfo
provided

ML_OR_CONSULTATION —
originalCallInfo provided

n callingDevice — the original callingDevice
received by the activeCall.

n calledDevice — the original calledDevice
received by the activeCall.

 NOTE:
In MERLIN MAGIX Release 2.0, originalCallInfo is
also provided for calls that have been redirected due
to Forwarding or Coverage. In this case, the reason
for the originalCallInfo gives no indication that the
originalCallInfo is due to Forwarding or Coverage.
However, the cause in the Delivered event is
EC_CALL_FORWARD.

Beginning with MERLIN MAGIX Release 2.1, changes
to the calledDevice parameter eliminate the need for
originalCallInfo in Forwarding and Coverage
scenarios. Also, the cause parameter provides a
distinction between Coverage and Forwarded calls.
For Coverage calls, the cause is EC_CALL_FORWARD
(as before), and for Forwarded calls, the cause is
EC_CALL_FORWARD_ALWAYS.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-29

trunkUsed Available beginning with private data Version 2.
Contains the trunk identifier (e.g. “T801”) when the call
involves a trunk

Private Data Versions 2 and 3 Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
MERLIN MAGIX private data library header files (mlpriv.h and mlpdefs.h) for a complete
description.

typedef struct {
 MLEventType_t eventType; /* ML_DELIVERED */
 union {
 /* Only the pertinent union element is shown */
 MLDeliveredEvent_t deliveredEvent;
 } u;
} MLEvent_t;

typedef struct MLDeliveredEvent_t {
 MLUserEnteredCode_t userEnteredCode;
 MLOriginalCallInfo_t originalCallInfo;
 DeviceID_t trunkUsed;
} MLDeliveredEvent_t;

/*
 * Note: ML_MAX_USER_CODE is defined in mlpriv.h to be the
 * maximum length of the collected digit string.
 */

typedef struct MLUserEnteredCode_t {
 MLUserEnteredCodeType_t type;
 char data[ML_MAX_USER_CODE];
} MLUserEnteredCode_t;

typedef enum MLUserEnteredCodeType_t {
 ML_UE_NONE = -1, /* no collected digits */
 ML_CALL_PROMPTER = 5 /* collected digits */
} MLUserEnteredCodeType_t;

typedef struct MLOriginalCallInfo_t {
 MLReasonForCallInfo_t reason;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 MLUserEnteredCode_t userEnteredCode;
} MLOriginalCallInfo_t;

typedef enum MLReasonForCallInfo_t {
 ML_OR_NONE = 0, /* no OCI present */
 ML_OR_CONSULTATION = 1 /* OCI present */
} MLReasonForCallInfo_t;

Call Events

8-30 Issue 2.2 Programmer’s Guide

Private Data Version 1 Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
MERLIN MAGIX private data library header files (mlpriv.h and mlpdefs.h) for a complete
description.

typedef struct {
 MLEventType_t eventType; /* MLV1_DELIVERED */
 union {
 /* Only the pertinent union element is shown */
 MLV1DeliveredEvent_t v1deliveredEvent;
 } u;
} MLEvent_t;

typedef struct MLV1DeliveredEvent_t {
 MLUserEnteredCode_t userEnteredCode;
 MLOriginalCallInfo_t originalCallInfo;
} MLV1DeliveredEvent_t;

/*
 * Note: ML_MAX_USER_CODE is defined in mlpriv.h to be the
 * maximum length of the collected digit string.
 */

typedef struct MLUserEnteredCode_t {
 MLUserEnteredCodeType_t type;
 char data[ML_MAX_USER_CODE];
} MLUserEnteredCode_t;

typedef enum MLUserEnteredCodeType_t {
 ML_UE_NONE = -1, /* no collected digits */
 ML_CALL_PROMPTER = 5 /* collected digits */
} MLUserEnteredCodeType_t;

typedef struct MLOriginalCallInfo_t {
 MLReasonForCallInfo_t reason;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 MLUserEnteredCode_t userEnteredCode;
} MLOriginalCallInfo_t;

typedef enum MLReasonForCallInfo_t {
 ML_OR_NONE = 0, /* no OCI present */
 ML_OR_CONSULTATION = 1 /* OCI present */
} MLReasonForCallInfo_t;

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-31

Important Feature Interactions

Auto Answer All - AAA (ATL Only)
An application will receive a CSTADeliveredEvent when the Auto Answer All
feature answers a call at a monitored device. ATL sets are discontinued
beginning in MERLIN MAGIX Release 1.5.

Auto Answer Intercom - AAI (ATL Only)
An application will receive a CSTADeliveredEvent when the Auto Answer
Intercom feature answers a call at a monitored device. ATL sets are discontinued
beginning in MERLIN MAGIX Release 1.5.

Call Screening
An application monitoring the station of a Call Screener will not receive a CSTA-
DeliveredEvent when a screened call is presented at the station because the call
does not alert. The application will receive a CSTAEstablishedEvent.

Call Waiting
When a call waits at a monitored station, monitoring applications will not receive a
CSTADeliveredEvent when the call waits. They will receive a
CSTADeliveredEvent when the waiting call begins to alert at the station. There is
no special information in the CSTADeliveredEvent to identify a call as a waiting
call.

Callback (CBQ)
An application monitoring a station that invokes the Callback feature will not
receive a CSTADeliveredEvent when the call leaves the Callback queue and
priority rings the invoking station. After the invoking station picks up and the call
then alerts the destination, monitoring applications will receive a
CSTADeliveredEvent for the delivery of the call to an SA button on the originally
called station. There is no special information in the CSTADeliveredEvent to
identify a call as a Callback call.

Camp-On
When a Camp-On call completes to an SA button on the originally called
extension, monitoring applications will receive a CSTADeliveredEvent.

In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, there is no special information in the CSTADelivered-
Event to identify a call as a Camp-On return call.

Beginning with MERLIN MAGIX Release 2.0, the cause is EC_RECALL for camp-
on return calls.

Call Events

8-32 Issue 2.2 Programmer’s Guide

Coverage
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application monitoring a station will not receive a
CSTADeliveredEvent for a call alerting at a COVER button.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring a station
receives a CSTADeliveredEvent for a call alerting at a COVER button. The
lastRedirectionDevice is the coverage sender, and the cause is
EC_CALL_FORWARD, indicating that the call has been forwarded due Coverage.

For MERLIN MAGIX Release 2.0 only, private data may provide originalCallInfo
about the call alerting at the coverage sender.

Beginning with MERLIN MAGIX Release 2.1, changes to the calledDevice
parameter eliminate the need for originalCallInfo for Coverage scenarios.

A monitoring application receives a CSTADeliveredEvent for a Calling Group
member that receives a Group Coverage call. There is no special information in
the CSTADeliveredEvent to identify the call as a Group Coverage call. In this
case, the call is treated as a Calling Group call, so the lastRedirectionDevice is
the Calling Group and the cause is EC_REDIRECTED.

An application monitoring a Calling Group member, that is proving Group
Coverage, will receive a CSTADeliveredEvent for all calls that are receiving
coverage treatment. For MERLIN MAGIX Release 2.0, in cases when the call
does not alert at the coverage sender (e.g. Do Not Disturb was active), the OCI
calledDevice is the Calling Group and not the Coverage Sender. Beginning with
MERLIN MAGIX Release 2.1, the calledDevice is the Coverage Sender,
regardless of the status of Do Not Disturb.

Direct Facility/Pool Termination
Prior to MERLIN MAGIX Release 2.0, the CSTADeliveredEvent was not
generated for DFT and DPT buttons.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring a station
will receive a CSTADeliveredEvent for an incoming call alerting at a DFT/DPT
button. The trunkUsed (private data version 2 or later) is the trunk identifier
associated with the call.

When a call appears on a DFT or DPT at an extension, there are cases where
the call can appear at the extension more than once. Examples are:

n an extension is a member of a Calling Group and also has a DFT or DPT
button for the line ringing into the Calling Group. The application
monitoring the extension receives two CSTADeliveredEvents. The
Calling Group alerts the call on an SA button at the extension and sends
an event with a cause of EC_REDIRECTED. The same call alerts on the
DFT/DPT button and sends the second event with a cause of
EC_NEW_CALL.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-33

n an extension has an incoming call forwarded to it from another extension
(alerts on an SA button) while it also has a DFT button for the facility the
call comes in on. An application monitoring the extension will receive two
CSTADeliveredEvents. The first event will be for the alert on the DFT
button and will have a cause of EC_NEW_CALL. The second will be for the
alert on the SA button and will have a cause of EC_CALL_FORWARD
(MERLIN MAGIX Release 2.0) or EC_CALL_FORWARD_ALWAYS
(beginning with MERLIN MAGIX Release 2.1).

Direct Inward Dial (DID) Trunks
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application monitoring a station will receive a
CSTADeliveredEvent for an incoming DID or unassigned DID call alerting at an
SA button. There is no special information in the CSTADeliveredEvent to
identify a call as a DID call.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring a station
receives a CSTADeliveredEvent for an incoming DID or unassigned DID call.
The trunkUsed (available beginning with private data version 2 and MERLIN
MAGIX Release 2.0) is the trunk identifier associated with the call.

Direct Line Console (DLC)
When an unmonitored DLC transfers an incoming trunk call to a monitored
extension, the callingDevice parameter in the resulting events appear as if the
trunk call came directly to that extension. This behavior lets an unmonitored DLC
transfer incoming calls to a customer service representative where an application
can pop a screen using the original caller’s information from the
CSTADeliveredEvent.

When a monitored DLC transfers an incoming CO call to a monitored station, the
CSTADeliveredEvent contains the same information as if any other station
extension transferred the call. If the DLC operator uses the cstaConsultation-
Call() service to transfer a call, an application running on behalf of the transfer
destination can pop a screen using the OCI.

Forward on Busy
An application monitoring a station where a forward-on-busy call alerts receives a
CSTADeliveredEvent for the forwarded call.

Beginning with MERLIN MAGIX Release 2.0, the lastRedirectionDevice is the
forwarded-from extension, and the cause is one of two values,
EC_CALL_FORWARD or EC_NEW_CALL. If the call appears on a button at the
forwarding station (most likely case) cause is EC_CALL_FORWARD. If the call
does not appear on a button cause is EC_NEW_CALL. Cases where the call does
not appear on a button include:

n There is no button available to receive the call

n Do Not Disturb is enabled and the station has some form of Coverage

Call Events

8-34 Issue 2.2 Programmer’s Guide

Beginning with MERLIN MAGIX 2.1, the operation is the same as that for
MERLIN MAGIX Release 2.0 except that cause is assigned
EC_CALL_FORWARD_ALWAYS instead of EC_CALL_FORWARD.

Forward/Follow Me
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application monitoring the station receiving a forwarded
call does not receive a CSTADeliveredEvent.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring a station
receives a CSTADeliveredEvent for a call alerting at the forward-to extension.
For calls Forwarded from an SA button, the lastRedirectionDevice is the
forward-from extension, and the cause is EC_CALL_FORWARD. If the call
appears on an SA button at the forward-from extension, private data may provide
Original Call Information for the forwarded call. For calls forwarded from a DFT or
DPT button, the lastRedirectionDevice is ID_NOT_KNOWN, and the cause is
EC_NEW_CALL.

Beginning with MERLIN MAGIX Release 2.1, the operation is the same as that for
MERLIN MAGIX Release 2.0 except that changes to the calledDevice parameter
eliminates the need for originalCallInfo for Forwarding scenarios. Also, a
distinction is made in cause between Coverage and Forwarded calls. For
Coverage calls, cause is EC_CALL_FORWARD (as before) and for Forwarded
calls cause is EC_CALL_FORWARD_ALWAYS.

Group Calling (DGC)
An application monitoring a station where a Calling Group call alerts on an SA
button will receive a CSTADeliveredEvent. This includes calls delivered to
Calling Group members and the Calling Group delay announcement unit. An
application monitoring a station where a Calling Group call alerts on an SA button
receives a CSTADeliveredEvent even in the case where the call first alerts at
the announcement unit, then alerts at one Calling Group member, then another,
etc. In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) environment, there is no special information in the CSTA-
DeliveredEvent to identify a call as a Calling Group call.

Beginning with MERLIN MAGIX Release 2.0, when a DGC call is delivered to a
Calling Group member, the lastRedirectionDevice in the CSTADeliveredEvent
is the Calling Group of which the station is a member (e.g. “Q770”), and the
cause is EC_REDIRECTED.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-35

Networking
An application monitoring a station where a non-local Uniform Dial Plan (UDP)
call alerts receives a CSTADeliveredEvent. If the call is answered, the
application will also receive a CSTAEstablishedEvent. The callingDevice
parameter in these events will contain the extension number of the calling device
on the originating MERLIN LEGEND or MERLIN MAGIX switch, provided that the
call has crossed only PRI trunks.

For a non-local UDP call crossing a tie trunk, the callingDevice parameter of the
CSTADeliveredEvent and the CSTAEstablishedEvent has a
deviceIDStatus of ID_NOT_KNOWN.

Beginning with MERLIN MAGIX Release 2.0, the CSTADeliveredEvent is
generated for a Network PRI call that is alerting at the far end.

Beginning with private data version 2 and MERLIN MAGIX Release 2.0, the
trunkUsed is the trunk identifier associated with the call.

When an incoming call with collected digits is directed from the MERLIN
Messaging system on one switch to another switch in the private network, an
application monitoring the station on the terminating switch will not receive
collected digits in the private data associated with the CSTADeliveredEvent and
CSTAEstablishedEvent.

An application monitoring the transfer destination when the transfer originator is
on another MERLIN LEGEND or MERLIN MAGIX switch in the private network
will receive a CSTADeliveredEvent and a CSTAEstablishedEvent for the
consultation call, but these events will not contain any private data for the Original
Call Information. The application will not receive a CSTATransferredEvent.

An application monitoring the added party when the conference originator is on
another MERLIN LEGEND or MERLIN MAGIX switch in the private network will
receive a CSTADeliveredEvent and a CSTAEstablishedEvent for the
consultation call, but these events will not contain any private data for the Original
Call Information. The application will not receive a CSTAConferencedEvent.

Night Service
An application monitoring a station where a Night Service call alerts will receive a
CSTADeliveredEvent. There is no special information in the
CSTADeliveredEvent to identify a call as a Night Service call.

Paging
An application will not receive a CSTADeliveredEvent for incoming
Speakerphone Paging calls.

Call Events

8-36 Issue 2.2 Programmer’s Guide

Park
An application monitoring an extension where the user parks a call will not
receive a CSTADeliveredEvent when the user presses the TRANSFER button to
park the call.3 If the parked call is not picked up within the Call Park Return
Interval, the application will receive a CSTADeliveredEvent when the parked call
returns and alerts at the parking station.

In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, there is no special information in the CSTADelivered-
Event to identify a call as a park return call.

Beginning with MERLIN MAGIX Release 2.0, the cause is EC_RECALL for park
return calls.

PRI
An application monitoring a station where a PRI call is alerting on an SA button
will receive a CSTADeliveredEvent.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring an
extension where the user makes a PRI call involving all digital lines will receive a
CSTADeliveredEvent when the switch receives a message that the far-end is
alerting. Note that the calledDevice will be the dialed number, which may not
accurately identify the alerting device.

Queued Call Console (QCC)
When a QCC transfers an incoming trunk call to a monitored extension, the
callingDevice parameter in the resulting events appear as if the trunk call came
directly to that extension. This behavior lets a QCC transfer incoming calls to a
customer service representative where an application can pop a screen using the
original caller’s information from the CSTADeliveredEvent.

Reminder Service
An application monitoring a station where a Reminder Service call alerts will not
receive CSTADeliveredEvent for the reminder call.

Service Observing
An application monitoring the station of a service observer will not receive a
CSTADeliveredEvent for calls delivered to or originating from the station being
observed.

However, an application monitoring the station of a service observer will receive a
CSTAEstablishedEvent when a call is answered at the station being observed.

3 A user parks a call by transferring the call to his/her own extension.

CSTADeliveredEvent

Programmer’s Guide Issue 2.2 8-37

Transfer Return
An application monitoring a station to which the Transfer Return feature returns a
call on an SA facility will receive a CSTADeliveredEvent when the transferred
call returns and alerts. In a MERLIN LEGEND (Release 5.0 or later) or
MERLIN MAGIX (Releases 1.0 and 1.5) environment, there is no special
information in the CSTADeliveredEvent to identify a call as a transfer return call.

Beginning with MERLIN MAGIX Release 2.0, the cause is EC_RECALL for
transfer return calls.

Voice Announce
An application will not receive a CSTADeliveredEvent for incoming Voice
Announce calls auto answered on the speakerphone.

Voice Prompting
When a VMI port transfers an incoming trunk call to a monitored extension, the
callingDevice parameters in the resulting events appear as if the trunk call came
directly to that extension. This behavior lets a VMI port transfer incoming calls to
a customer service representative where an application can pop a screen using
the original call’s information from the CSTADeliveredEvent.

Call Events

8-38 Issue 2.2 Programmer’s Guide

CSTADivertedEvent

The CSTADivertedEvent indicates that a call has been redirected and is no
longer present at a monitored device.

The MERLIN MAGIX switch provides this event beginning with Release 1.5.

The MERLIN MAGIX switch provides this event only when a call is redirected
from a monitored Calling Group queue. This event is generated in the following
scenarios:

n a queued call is redirected through the cstaDeflectCall() service.

n a queued call is redirected to the overflow queue, the support group or the
QCC Listed Directory Number.

n a queued call is delivered to an available Calling Group member.

n a queued call is picked up via Line Pickup.

n a queued call that is also alerting at a Primary or Secondary Coverage
button is answered at the Coverage button.

n a queued call that is also alerting at a DFT or DPT button is answered at
the DFT or DPT button.

n a queued call that is also alerting at an SA button is answered at a Shared
System Access button.

It is possible to receive multiple CSTADivertedEvents for a single call.

Event Parameters

Table 8-12. CSTADivertedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_DIVERTED

monitorCrossRefID event occurred on this monitor

connection queued connection in the Calling Group queue

divertingDevice Calling Group where the call was queued before
being redirected.

newDestination device that the call was redirected to

localConnectionInfo CS_NONE, not provided

cause reason for Diverted event

privateData NULL, not used for this event

CSTADivertedEvent

Programmer’s Guide Issue 2.2 8-39

Event Scenario Diagram

Figure 8-4 illustrates one possible CSTADivertedEvent scenario.

Before After

D1 is alertingDevice
D1C1 is connection

Figure 8-4. CSTADivertedEvent Scenario

Event Causes

Table 8-13. MERLIN MAGIX Release 1.5 CSTADivertedEvent Causes

EC_REDIRECTED The MERLIN MAGIX Release 1.5 switch provides
this cause in all CSTADivertedEvents.

Table 8-14. MERLIN MAGIX Release 2.0 and later CSTADivertedEvent
Causes

EC_REDIRECTED The MERLIN MAGIX Release 2.0 and 2.1 switches
provides this cause for all cases except those
specified below:

EC_CALL_PICKUP connection has been picked up via Line Pickup.
EC_OVERFLOW connection has been redirected from a Calling

Group queue to the overflow group, the support
group or the QCC LDN.

D1 D2 C1
a *

D3

D1 D2 C1

a

*

D3

Call Events

8-40 Issue 2.2 Programmer’s Guide

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTADivertedEvent_t diverted;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTADivertedEvent_t {
 ConnectionID_t connection;
 SubjectDeviceID_t divertingDevice;
 CalledDeviceID_t newDestination;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTADivertedEvent_t;

Important Feature Interactions

Call Pickup
An application will receive a CSTADivertedEvent when a call in a monitored
Calling Group queue is picked up at another extension. Beginning with MERLIN
MAGIX Release 2.0, the cause for the event is EC_CALL_PICKUP.

Coverage
An application will receive a CSTADivertedEvent when a call in a monitored
Calling Group queue is answered at a Primary or Secondary COVER button.

Direct Facility/Pool Termination
An application will receive a CSTADivertedEvent when a call in a monitored
Calling Group queue is answered at a DFT or DPT button.

CSTADivertedEvent

Programmer’s Guide Issue 2.2 8-41

Group Calling (DGC)
An application will receive a CSTADivertedEvent when a call in a monitored
Calling Group queue is delivered to a Calling Group member.

An application will receive a CSTADivertedEvent when a call in a monitored
Calling Group queue is delivered to the Overflow or support group. Beginning with
MERLIN MAGIX Release 2.0, the cause for the event is EC_OVERFLOW. The
newDestination is the overflow member receiving the call.

Queued Call Console (QCC)
An application will receive a CSTADivertedEvent when a call in a monitored
Calling Group queue is redirected to the QCC LDN. Beginning with MERLIN
MAGIX Release 2.0, the cause for the event is EC_OVERFLOW.

Call Events

8-42 Issue 2.2 Programmer’s Guide

CSTAEstablishedEvent

The CSTAEstablishedEvent indicates that a call (possibly a consultation call)
has been answered at a station.

Unlike the CSTADeliveredEvent, the MERLIN LEGEND and MERLIN MAGIX
switches provide a CSTAEstablishedEvent for a call answered on any button
type, including a Shared System Access button.

Event Parameters

Table 8-15. CSTAEstablishedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_ESTABLISHED

monitorCrossRefID event occurred on this monitor

establishedconnection established connection (contains deviceID and call)

answeringDevice device where connection established

callingDevice the calling device may contain a number identifying
the calling party number. See below for details.

calledDevice the called device may contain a number identifying
the called party number. See below for details

lastRedirectionDevice For MERLIN MAGIX Release 2.0 and later, the last
redirection device for the call, when applicable. See
below for details

localConnectionInfo CS_NONE, none provided

cause reason for Established event (see Tables 8-16 and
8-17)

privateData may contain call prompting digits, original call
information, and/or (private data version 2 and later)
the trunk identifier for the call

The callingDevice parameter contains the ANI/ICLID for a party (when the trunk
provides it) or the extension for a local party. CSTA permits values indicating
“unknown” for certain CSTAEstablishedEvent parameters in certain
circumstances. When an incoming call arrives on a trunk that does not provide
ANI/ICLID, the callingDevice has deviceIDStatus of ID_NOT_KNOWN.

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-43

! IMPORTANT:
For a CSTAEstablishedEvent event to provide the calling number for an
incoming external call, the external call must arrive on either:

n PRI/BRI facilities provisioned to provide ANI.

n trunks that have ICLID-Delay applied by the switch. Typically a call on a
facility alerting into a Calling Group, would be delayed being delivered to
an extension until the ICLID information arrived.

The switch populates the TSAPI calledDevice parameter to identify the device
being called. Beginning with MERLIN MAGIX Release 2.0, an application
monitoring an extension where the user makes a PRI call involving all digital lines
will receive a CSTAEstablishedEvent when the switch receives a message that
the far-end has connected. The calledDevice will be the dialed number, which
may or may not match the answering device number. All other outgoing calls do
not generate a CSTAEstablishedEvent.

For incoming calls, the calledDevice parameter is populated with one of the
following:

n The called number from the ISDN setup message for calls over PRI
facilities

n ID_NOT_KNOWN (deviceIDStatus) for DFT/DPT calls over non-PRI
facilities

n DGC Queue for DGC calls over non-PRI facilities and where the facilities
do not terminate on DFT/DPT buttons

n ID_NOT_KNOWN (deviceIDStatus) for DGC calls over non-PRI facilities
that terminate on DFT/DPT buttons

n For intercom calls, the calledDevice parameter is populated with one of
the following:

n The called extension number for a simple station to station call

n The forwarding station for forwarded calls including forwarded on busy

n The coverage sender for coverage calls including Calling Group coverage

n The DGC Queue for DGC calls

n The station extension where a call is being picked up from, using the call
pickup feature

As a call redirects (coverage, forwarding, etc.) from its original destination to other
endpoints, the calledDevice for an incoming PRI or BRI call remains static.
Beginning in MERLIN MAGIX Release 2.1, this is true of the calledDevice
parameter for all calls.

Call Events

8-44 Issue 2.2 Programmer’s Guide

The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches do not populate the TSAPI lastRedirectionDevice
parameter. This parameter always has deviceIDStatus of ID_NOT_KNOWN.
Beginning with MERLIN MAGIX Release 2.0, the switch populates the TSAPI
lastRedirectionDevice parameter as follows:

n If the call is a DGC call alerting at a station that is a Calling Group
member, the lastRedirectionDevice contains the number of the Calling
Group of which the station is a member. The Calling Group for the call and
the alerting station may be different.

n Otherwise,

 If the call is alerting at a Cover button, the lastRedirectionDevice
contains the extension of the coverage sender

 If the call is internal call alerting at a forward-to station, the last-
RedirectionDevice contains the forward-from extension. The
MERLIN MAGIX switch does not provide lastRedirectionDevice
for a call forwarded from a DFT or DPT button.

The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) switches always populate the TSAPI cause parameter with
EC_NEW_CALL.

Beginning with MERLIN MAGIX Release 2.0, the switch will populate the TSAPI
cause parameter with the following information (the precedence is the presented
order):

n If the call is an observed call at the station of a Service Observer, the
cause is EC_SILENT_MONITOR.

n If the call is a DGC call alerting at a station that is a Calling Group
member, the cause is EC_REDIRECTED.

n If the call is a transfer, park or camp-on return call, the cause is
EC_RECALL.

n If the call is answered at a Cover button, the cause is
EC_CALL_FORWARD.

n If the call is answered at a forward-to station (when the call is a non-
DFT/DPT call), the cause is EC_CALL_FORWARD. Beginning with MERLIN
MAGIX Release 2.1 the cause is EC_CALL_FORWARD_ALWAYS.

n If the call is answered using Call Pickup or Line Pickup, the cause is
EC_CALL_PICKUP.

n If the call is an outgoing PRI call, the cause is EC_NONE

n If the call was delivered to the answeringDevice through an unsupervised
transfer, the cause is EC_TRANSFER.

n For all other cases, the cause is EC_NEW_CALL.

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-45

The CSTAEstablishedEvent may contain private data that carries:

n any collected digits that have been associated with the call – If the call is
an incoming call that has been routed through a VMI port and prompted
digits have been collected

n information about the original call – When an application uses
cstaConsultationCall() to extend a call, information about the original call
is provided in private data. This “original call information” about the transfer
source4 appears in any CSTAEstablishedEvents for the consultation call.
An application at the desktop receiving the consultation call can use the
original calling number, original PRI Called Number (DNIS), or original call
prompter digits to pop an appropriate screen.

When a user (transfer originator) makes an outbound call and then initiates a
consultation transfer to another extension (transfer destination) consults to
another user, the application will receive a CSTAEstablishedEvent containing
Original Call Information showing the transfer originator’s extension as the
original calling party. However, in the case of an Unsupervised transfer, the
CSTAEstablishedEvent will not contain Original Call Information because the
transfer originator is no longer a party to the call.

Beginning with private data version 2 and MERLIN MAGIX Release 2.0, private
data in the CSTAEstablishedEvent may also contain the trunk identifier (e.g.
“T802”) associated with an external call.

In MERLIN LEGEND and MERLIN MAGIX CTI, a connection ID contains a callID
that uniquely identifies a call within the switch. Similarly, a deviceID uniquely
identifies a device within the switch. Since establishedConnection is a
connectionID (containing both callID and deviceID), the answeringDevice
parameter is redundant. However, both of these parameters are mandatory in
CSTA so they must be present.

 NOTE:
Not all switches use static, unique device identifiers. Use the
answeringDevice parameter, not the deviceID within the
establishedConnection parameter to obtain the deviceID for the
answering device. This will assist in making the application switch-
independent.

4 The MERLIN LEGEND and MERLIN MAGIX switches use the following terms in a transfer

scenario: When a call is being transferred, the party doing the transferring is the transfer
originator. The party being transferred is the transfer source. The party receiving the transferred
call is the transfer destination. Thus, the activeCall parameter in a cstaConsultationCall() is a
connection at the transfer originator for the call at the transfer source. The calledDevice
parameter in a cstaConsultationCall specifies the transfer destination.

Call Events

8-46 Issue 2.2 Programmer’s Guide

 NOTE:
The MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) switches do not provide the
CSTAEstablishedEvent event for the outbound leg of a call, leaving the
switch on a trunk providing answer supervision.5 Note that the
cstaGetAPICaps() query does not distinguish between providing this
event for a local monitored station calls and trunks. The
cstaGetAPICaps() response will indicate that the MERLIN LEGEND and
MERLIN MAGIX switches provide this event. Programmers must
understand the limitation in the cstaGetAPICaps() response and not
program applications to expect a CSTAEstablishedEvent event for the far
end on an outbound trunk call.

Beginning with MERLIN MAGIX Release 2.0, the switch provides the
CSTAEstablishedEvent event for the outbound leg of a call, leaving the
switch on a PRI trunk when the switch receives a message that the far-end
has answered. (This requires that the call be routed only on digital
facilities.)

 NOTE:
The CSTAEstablishedEvent event is not generated for DGC calls that go
over the private network.

Event Scenario Diagram

Figure 8-5 illustrates one possible CSTAEstablishedEvent scenario.

Before After

D1 D2 c C1 a

D1 is answeringDevice

D1 D2 c C1 c

D1C1 is establishedConnection

Figure 8-5. CSTAEstablishedEvent Scenario

5 PRI trunking provides the switch with signaling information that the switch can in this

circumstance use to generate this event. Generation of an Established event is provided
beginning with MERLIN MAGIX Release 2.0.

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-47

Event Causes

Table 8-16. MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX
(Releases 1.0 and 1.5) CSTAEstablishedEvent Causes

EC_NONE The MERLIN LEGEND (Release 5.0 and later) and
MERLIN MAGIX (Releases 1.0 and 1.5) switches
provide this cause in all CSTAEstablishedEvents

Table 8-17. MERLIN MAGIX Releases 2.0 and 2.1 CSTAEstablishedEvent
Causes

EC_NEW_CALL The MERLIN MAGIX Release 2.0 switch
provides this cause in all cases except those
specified below:

EC_CALL_FORWARD_ALWAYS establishedConnection has been forwarded
via the Call Forwarding or Coverage features
(beginning in MERLIN MAGIX Release 2.1)

EC_CALL_FORWARD establishedConnection has been forwarded
via the Call Forwarding or Coverage features
(prior to MERLIN MAGIX Release 2.1)

EC_CALL_PICKUP establishedConnection has been answered
via the Line Pickup feature

EC_RECALL establishedConnection is a transfer, park or
camp-on return call

EC_REDIRECTED answeringDevice is a Calling Group member
and establishedConnection is a DGC call

EC_NONE establishedConnection is an outgoing PRI
call that is alerting at the far end

EC_SILENT_MONITOR establishedConnection is an observed call at
the station of a Service Observer

EC_TRANSFER establishedConnection was delivered to
answeringDevice through an unsupervised
transfer

Call Events

8-48 Issue 2.2 Programmer’s Guide

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files (acs.h, acsdefs.h, csta.h and cstadefs.h) for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAEstablishedEvent_t established;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAEstablishedEvent_t {
 ConnectionID_t establishedConnection;
 SubjectDeviceID_t answeringDevice;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 RedirectionDeviceID_t lastRedirectionDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTAEstablishedEvent_t;

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-49

Private Data Parameters

Table 8-18. CSTAEstablishedEvent Private Data Parameters

userEnteredCode Specifies the code/digits that may have been entered by
the caller through the Collected Digits feature. If the
userEnteredCode code is set to “ML_UE_NONE”, no
userEnteredCode private data is provided with this event.
If the userEnteredCode code is set to
“ML_CALL_PROMPTER,” userEnteredCode private data
is provided with this event. See the MERLIN LEGEND
Advanced Communications System Feature Reference or
MERLIN MAGIX Integrated System Feature Reference (in
the CTI Link section) for information on how to set up the
switch and application for collecting userEnteredCode
through the Collected Digits feature.

Call Events

8-50 Issue 2.2 Programmer’s Guide

originalCallInfo Specifies the original call information. Note that information
is not repeated in the originalCallInfo if it is already
reported in the CSTA service parameters. For example,
the callingDevice and calledDevice in the
originalCallInfo will not be set if the callingDevice and the
calledDevice in the CSTA service parameters are the
original calling and called devices. The callingDevice and
calledDevice in the originalCallInfo will be set only when
the original devices are different from the most recent
callingDevice and calledDevice.

 NOTE:

For the Established Event received for the newCall of a
Consultation Call, the originalCallInfo is taken from the
activeCall specified in the Consultation Call request. Thus
the application can pass the original call information
between two calls. The calledDevice of the Consultation
Call must reside on the same switch and must be
monitored via the same Tserver.

The original call information includes:

n reason — the reason for the originalCallInfo. The
following reasons are supported:

ML_OR_NONE — no originalCallInfo provided

ML_OR_CONSULTATION — originalCallInfo
provided

n callingDevice — the original callingDevice received
by the activeCall

n calledDevice — the original calledDevice received by
the activeCall

 NOTE:
In MERLIN MAGIX Release 2.0, originalCallInfo is also
provided for calls that have been redirected due to
Forwarding or Coverage. In this case, the reason for the
originalCallInfo gives no indication that the
originalCallInfo is due to Forwarding or Coverage.
However, the cause in the Delivered event is
EC_CALL_FORWARD.

In MERLIN MAGIX Release 2.1, changes to the
calledDevice parameter eliminates the need for
originalCallInfo for Forwarding and Cover scenarios. Also,
a distinction is made in cause between Cover and
Forwarding calls. For Cover calls, cause is
EC_CALL_FORWARD (as before) and for Forwarding calls
cause is EC_CALL_FORWARD_ALWAYS.

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-51

trunkUsed Available beginning with private data version 2. Contains
the trunk identifier (e.g. “T801”) when the call involves a
trunk

Private Data Versions 2 and 3 Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
MERLIN MAGIX private data library header files (mlpriv.h and mlpdefs.h) for a complete
description.

typedef struct {
 MLEventType_t eventType; /* ML_ESTABLISHED */
 union {
 /* Only the pertinent union element is shown */
 MLEstablishedEvent_t establishedEvent;
 } u;
} MLEvent_t;

typedef struct MLEstablishedEvent_t {
 MLUserEnteredCode userEnteredCode;
 MLOriginalCallInfo_t originalCallInfo;
 DeviceID_t trunkUsed;
} MLEstablishedEvent_t;

/*
 * Note: ML_MAX_USER_CODE is defined in mlpriv.h to be the
 * maximum length of the collected digit string.
 */

typedef struct MLUserEnteredCode_t {
 MLUserEnteredCodeType_t type;
 char data[ML_MAX_USER_CODE];
} MLUserEnteredCode_t;

typedef enum MLUserEnteredCodeType_t {
 ML_UE_NONE = -1, /* no collected digits */
 ML_CALL_PROMPTER = 5 /* collected digits */
} MLUserEnteredCodeType_t;

typedef struct MLOriginalCallInfo_t {
 MLReasonForCallInfo_t reason;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 MLUserEnteredCode_t userEnteredCode;
} MLOriginalCallInfo_t;

typedef enum MLReasonForCallInfo_t {
 ML_OR_NONE = 0, /* no OCI present*/
 ML_OR_CONSULTATION = 1 /* OCI present */
} MLReasonForCallInfo_t;

Call Events

8-52 Issue 2.2 Programmer’s Guide

Private Data Version 1 Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
MERLIN MAGIX private data library header files (mlpriv.h and mlpdefs.h) for a complete
description.

typedef struct {
 MLEventType_t eventType; /* MLV1_ESTABLISHED */
 union {
 /* Only the pertinent union element is shown */
 MLV1EstablishedEvent_t v1establishedEvent;
 } u;
} MLEvent_t;

typedef struct MLV1EstablishedEvent_t {
 MLUserEnteredCode_t userEnteredCode;
 MLOriginalCallInfo_t originalCallInfo;
} MLV1EstablishedEvent_t;

/*
 * Note: ML_MAX_USER_CODE is defined in mlpriv.h to be the
 * maximum length of the collected digit string.
 */

typedef struct MLUserEnteredCode_t {
 MLUserEnteredCodeType_t type;
 char data[ML_MAX_USER_CODE];
} MLUserEnteredCode_t;

typedef enum MLUserEnteredCodeType_t {
 ML_UE_NONE = -1, /* no collected digits */
 ML_CALL_PROMPTER = 5 /* collected digits */
} MLUserEnteredCodeType_t;

typedef struct MLOriginalCallInfo_t {
 MLReasonForCallInfo_t reason;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 MLUserEnteredCode_t userEnteredCode;
} MLOriginalCallInfo_t;

typedef enum MLReasonForCallInfo_t {
 ML_OR_NONE = 0, /* no OCI present */
 ML_OR_CONSULTATION = 1 /* OCI present */
} MLReasonForCallInfo_t;

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-53

Important Feature Interactions

When, in the presence of a feature interaction, an application receives a
CSTADeliveredEvent, it will also receive the corresponding
CSTAEstablishedEvent if the alerting connection is answered. With the
exception of Auto Answer, in those feature interactions where an application does
not receive a CSTADeliveredEvent, it may receive a CSTAEstablishedEvent.
Refer to “Important Feature Interactions” pertaining to the CSTADeliveredEvent
for related information.

There are cases when a CSTADeliveredEvent will contain private data, but the
CSTAEstablishedEvent will not. This will happen when the calling device is no
longer on the call. For, if a monitored extension makes an external call and then
does an unsupervised transfer (using the services) to another extension, the
CSTADeliveredEvent will contain private data with the original calling and called
device, but the CSTAEstablishedEvent will not. This prevents an application
doing a screen pop on the Transfer Originator, who is no longer on the call.

Auto Answer
An application will not receive a CSTAEstablishedEvent when a call is auto
answered (via the headset feature) at a monitored station.

Barge-In
An application will not receive a CSTAEstablishedEvent when a monitored
extension Barges-In on a call.

Call Pickup
In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) environment, an application will not receive a CSTAEstablished-
Event when a call is picked up at a monitored station.

Beginning with MERLIN MAGIX Release 2.0, an application receives a
CSTAEstablishedEvent when a call is picked up at a monitored station, and the
cause is EC_CALL_PICKUP.

Call Screening
A device monitor for the extension of a Call Screener will receive a
CSTAEstablishedEvent when a screened call is presented at the extension.
The cause in the CSTAEstablishedEvent is EC_SILENT_MONITOR. Device
monitors for other extensions on the call will not receive this event.

Camp-On
When a camp-on return call is answered at a monitored station, monitoring
applications will receive a CSTAEstablishedEvent.

Call Events

8-54 Issue 2.2 Programmer’s Guide

In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) environment, there is no special information in the
CSTAEstablishedEvent to identify a call as a Camp-On return call.

Beginning with MERLIN MAGIX Release 2.0, the cause is EC_RECALL for camp-
on return calls.

Coverage
In a MERLIN LEGEND (Release 5.0 and later) and MERLIN MAGIX (Releases
1.0 and 1.5) environment, an application monitoring a station will not receive a
CSTAEstablishedEvent for a call answered at a COVER button.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring a station
receives a CSTAEstablishedEvent for a call answered at a COVER button. The
lastRedirectionDevice is the coverage sender, and the cause is
EC_CALL_FORWARD, indicating that the call has been forwarded due to either
Coverage or Forwarding. Private data may provide Original Call Information
about the call delivered to the coverage sender. Beginning with MERLIN MAGIX
Release 2.1, changes to the calledDevice parameter eliminates the need for
originalCallInfo for Forwarding and Cover scenarios and it is therefore no longer
provided.

A monitoring application receives a CSTAEstablishedEvent for a Calling Group
member which gets Group Coverage call that is answered on an SA button.
There is no special information in the CSTAEstablishedEvent to identify the call
as a Group Coverage call. In this case, the call is treated as a Calling Group Call,
so the lastRedirectionDevice is the Calling Group and the cause is
EC_REDIRECTED.

Direct Facility/Pool Termination
An application monitoring a station receives a CSTAEstablishedEvent for an
incoming call answered at a DFT or DPT button. The trunkUsed (private data
version 2 or later) is the trunk identifier associated with the call.

When a DFT appears at an extension, there are cases where the call can appear
at the extension more than once.

An example of this is when the extension is a member of a Calling Group and
also has a DFT appearance of the line that is ringing into the Calling Group. In
this case, the application monitoring the extension receives two
CSTADeliveredEvents. One has a cause of EC_REDIRECTED and the other
has a cause of EC_NEW_CALL. If the call is answered at the DFT, the
CSTAEstablishedEvent has a cause of EC_NEW_CALL. If the call is answered
at the SA button, the CSTAEstablishedEvent has a cause of EC_REDIRECTED.

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-55

Another example is when a forwarded-to extension is alerting (on an SA button)
with a call forwarded from another extension and the extension has the same call
also alerting on a DFT button. In this case, the application monitoring the
extension receives two CSTADeliveredEvents. One has a cause of
EC_CALL_FORWARD_ALWAYS and the other has a cause of EC_NEW_CALL. If
the call is answered at the DFT, the CSTAEstablishedEvent has a cause of
EC_NEW_CALL. If the call is answered at the SA button, the
CSTAEstablishedEvent has a cause of EC_CALL_FORWARD_ALWAYS.

Direct Line Console (DLC)

When an unmonitored DLC transfers an incoming trunk call to a monitored
extension, the calling party parameters in the resulting CSTAEstablishedEvent
appears as if the trunk call came directly to the monitored station.

When a monitored DLC transfers an incoming CO call to a monitored station, the
CSTAEstablishedEvent contains the same information as if any other station
extension transferred the call.

Direct Inward Dial (DID) Trunks
An application monitoring a station receives a CSTAEstablishedEvent when an
incoming DID or unassigned DID call is answered. Beginning with
MERLIN MAGIX Release 2.0, the trunkUsed (private data version 2 or later) is
the trunk identifier associated with the call.

Forward on Busy
An application monitoring a station where a forward-on-busy call is answered
receives a CSTAEstablishedEvent for the forwarded call.

Beginning with MERLIN MAGIX Release 2.0, the lastRedirectionDevice is the
forwarded-from extension, and the cause is one of two values,
EC_CALL_FORWARD or EC_NEW_CALL. If the call appears on a button at the
forwarding station (most likely case) cause is EC_CALL_FORWARD. If the call
does not appear on a button cause is EC_NEW_CALL.. Cases where the call does
not appear on a button includes:

n There is no button available to receive the call

n Do Not Disturb is enabled and the station has some form of Coverage

Beginning with MERLIN MAGIX Release 2.1, the operation is the same as that for
MERLIN MAGIX Release 2.0 except that cause is assigned
EC_CALL_FORWARD_ALWAYS instead of EC_CALL_FORWARD.

Forward/Follow Me
In a MERLIN LEGEND (Release 5.0 or later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, an application monitoring the station receiving a forwarded
call does not receive a CSTADeliveredEvent.

Call Events

8-56 Issue 2.2 Programmer’s Guide

Beginning with MERLIN MAGIX Release 2.0, for calls Forwarded from an SA
button, the lastRedirectionDevice is the forward-from extension, and the cause
is EC_CALL_FORWARD. If the call appears on an SA button at the forward-from
extension, private data may provide Original Call Information for the forwarded
call. For calls forwarded from a DFT or DPT button, the lastRedirectionDevice is
ID_NOT_KNOWN, and the cause is EC_NEW_CALL.

Beginning with MERLIN MAGIX Release 2.1, the operation is the same as that for
MERLIN MAGIX Release 2.0 except that changes to the calledDevice parameter
eliminates the need for originalCallInfo for Forwarding scenarios. Also, a
distinction is made in cause between Cover and Forwarding calls. For Cover
calls, cause is EC_CALL_FORWARD (as before) and for Forwarding calls cause is
EC_CALL_FORWARD_ALWAYS.

Group Calling (DGC)
An application monitoring a station where a DGC call is answered receives a
CSTAEstablishedEvent. Beginning with MERLIN MAGIX Release 2.0, when a
DGC call is answered by a Calling Group member, the lastRedirectionDevice is
the Calling Group (i.e. “Q770”), and the cause is EC_REDIRECTED

Networking
An application monitoring a station where a non-local Uniform Dial Plan (UDP)
call is answered receives a CSTAEstablishedEvent. The callingDevice
parameter contains the extension number of the calling device on the originating
MERLIN LEGEND or MERLIN MAGIX switch.

For a non-local UDP call crossing a tie trunk, the callingDevice parameter of the
CSTAEstablishedEvent has a deviceIDStatus of ID_NOT_KNOWN.

Beginning with MERLIN MAGIX Release 2.0 and private data version 2, the
trunkUsed is the trunk identifier associated with the call.

Beginning with MERLIN MAGIX Release 2.0, the CSTAEstablishedEvent is
generated for a Network PRI call that is answered at the far end.

When an incoming call for which digits were collected is directed from the
MERLIN Messaging system on one switch to an extension on a satellite switch,
an application monitoring the extension on the terminating switch will not receive
collected digits in the private data associated with the CSTAEstablishedEvent.

An application monitoring the transfer destination when the transfer originator is
on another MERLIN LEGEND or MERLIN MAGIX switch in the private network
receives a CSTADeliveredEvent and a CSTAEstablishedEvent for the
consultation call, but these events will not contain any private data for the Original
Call Information. The application will not receive a CSTATransferredEvent.

CSTAEstablishedEvent

Programmer’s Guide Issue 2.2 8-57

An application monitoring the added party when the conference originator is on
another MERLIN LEGEND or MERLIN MAGIX switch in the private network
receives a CSTADeliveredEvent and a CSTAEstablishedEvent for the
consultation call, but these events will not contain any private data for the Original
Call Information. The application will not receive a CSTAConferencedEvent.

Paging
An application will not receive a CSTAEstablishedEvent for Speakerphone
Paging calls.

Queued Call Console (QCC)
When a QCC transfers an incoming trunk call to a monitored extension, the
calling party parameters in the resulting events appear as if the trunk call came
directly to that extension. This behavior lets a QCC transfer incoming calls to a
customer service representative where an application can pop a screen using the
original caller’s information from the CSTADeliveredEvent.

Park
When a park return call is answered at a monitored station, an application will
receive a CSTAEstablishedEvent.

In a MERLIN LEGEND (Release 5.0 and later) or MERLIN MAGIX (Releases 1.0
and 1.5) environment, there is no special information in the
CSTAEstablishedEvent to identify a call as a park return call.

Beginning with MERLIN MAGIX Release 2.0, the cause is EC_RECALL for park
return calls.

PRI
An application monitoring an extension where a PRI call is answered receives a
CSTAEstablishedEvent.

Beginning with MERLIN MAGIX Release 2.0, an application monitoring an
extension where the user makes a PRI call involving all digital lines receives a
CSTAEstablishedEvent when the switch receives a message that the far-end
has answered. Note that the calledDevice contains the dialed number, which
may not match the answering device.

Reminder Service
An application monitoring a station where a Reminder Service call is answered
will not receive CSTAEstablishedEvent.

Call Events

8-58 Issue 2.2 Programmer’s Guide

Service Observing
An application monitoring a station for a service observer receives a CSTA-
EstablishedEvent when the observed call appears at the station of the service
observer.

Beginning with MERLIN MAGIX Release 2.0, only an application monitoring the
service observer receives a CSTAEstablishedEvent when the observer
monitors calls at a targeted station. Service Observing can be activated for a
targeted station at any time. If the targeted station is already active on a call when
Service Observing is initiated no CSTAEstablishedEvent will be delivered to an
application monitoring the Service Observer. In order for the
CSTAEstablishedEvent to be delivered Service Observing must be active at the
time the targeted station becomes active on the call The cause in the CSTA-
EstablishedEvent is EC_SILENT_MONITOR.

Transfer Return
When a transfer return call is answered at a monitored station, an application
receives a CSTAEstablishedEvent. In a MERLIN LEGEND (Release 5.0 and
later) or MERLIN MAGIX (Releases 1.0 and 1.5) environment, t here is no special
information in the CSTAEstablishedEvent to identify the call as a transfer return
call.

Beginning with MERLIN MAGIX Release 2.0, the cause is EC_RECALL for
transfer return calls.

Voice Announce
An application receives a CSTAEstablishedEvent for incoming Voice Announce
calls.

Voice Prompting
When a VMI port transfers an incoming trunk call to a monitored extension, the
calling party parameters in the resulting events appear as if the trunk call came
directly to that extension. This behavior lets a VMI port transfer incoming calls to
a customer service representative where an application can pop a screen using
the original call’s information from the CSTADeliveredEvent.

CSTAHeldEvent

Programmer’s Guide Issue 2.2 8-59

CSTAHeldEvent

The CSTAHeldEvent indicates that station holdingDevice placed the
heldConnection on hold, on hold-for-conference, or on hold-for-transfer. Prior to
MERLIN MAGIX Release 2.1, CSTAHeldEvent event did not distinguish between
the various MERLIN LEGEND and MERLIN MAGIX switch hold types (hold, hold-
for-transfer, hold-for-conference.). Beginning with MERLIN MAGIX Release 2.1,
the CSTAHeldEvent distinguishes hold-for-transfer from hold and hold-for-
conference.

 NOTE:
The MERLIN LEGEND and MERLIN MAGIX switches do not supply this
event when a call is placed on associative hold.

Event Parameters

Table 8-19. CSTAHeldEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_HELD

monitorCrossRefID event occurred on this monitor

heldConnection held connection (contains deviceID and callID)

holdingDevice device where connection held

localConnectionInfo CS_NONE, not provided

cause reason for Held event

privateData NULL, none present in Held event

Call Events

8-60 Issue 2.2 Programmer’s Guide

Event Scenario Diagram

Figure 8-6 illustrates one possible CSTAHeldEvent scenario.

Before After

D1 D2 c C1 c

D1 is holdingDevice

D1 D2 c C1 h

D1C1 is heldConnection

Figure 8-6. CSTAHeldEvent Scenario

Event Causes

Table 8-20. CSTAHeldEvent Causes Prior to MERLIN MAGIX 2.1

EC_NONE Hold, hold for conference, hold for transfer

Table 8-21. CSTAHeldEvent Causes for MERLIN MAGIX Release 2.1 and
Later

EC_NONE Hold, hold for conference
EC_TRANSFER Hold for transfer

CSTAHeldEvent

Programmer’s Guide Issue 2.2 8-61

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAHeldEvent_t held;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAHeldEvent_t {
 ConnectionID_t heldConnection;
 SubjectDeviceID_t holdingDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTAHeldEvent_t;

Important Feature Interactions

Conference
An application cannot use the cstaConferenceCall() service to conference a call
that has been placed on hold (the call must be held-for-conference or held-for-
transfer.) Receipt of a CSTAHeldEvent is not sufficient for an application to infer
that the held call can be conferenced. The user may have pressed the HOLD
button (resulting in a hold) rather than the CONFERENCE button (resulting in hold-
for-conference) or the TRANSFER button (resulting in hold-for-transfer).

Park
When a call is Parked an application monitoring the device where the call is
Parked will receive a CSTAHeldEvent with a cause of EC_TRANSFER but the call
can not be transferred.

Call Events

8-62 Issue 2.2 Programmer’s Guide

Service Observing
An application monitoring a station for a service observer receives a CSTA-
HeldEvent when an observed call is placed on hold.

Transfer
An application cannot use the cstaTransferCall() service to transfer a call that
has been placed on hold (must be held-for-transfer). Prior to MERLIN MAGIX
Release 2.1, receipt of a CSTAHeldEvent is not sufficient to infer that the call
can be transferred. The user may have pressed the HOLD button (resulting in a
hold) rather than the TRANSFER button (resulting in hold-for-transfer). Beginning
with MERLIN MAGIX Release 2.1, receipt of a CSTAHeldEvent is usually
sufficient to determine if a call can transferred because cause is EC_TRANSFER
for calls on hold-for-transfer.

CSTANetworkReachedEvent

Programmer’s Guide Issue 2.2 8-63

CSTANetworkReachedEvent

The CSTANetworkReachedEvent indicates that a call is an outgoing trunk call
and is seizing a trunk. Since trunk signaling does not provide as much information
about Call Events as the MERLIN LEGEND or MERLIN MAGIX switch obtains for
local devices, an application may not receive any additional events for the trunk
far end.

connection is the trunk’s connection to the call.

trunkUsed identifies the trunk. It contains the MERLIN LEGEND or MERLIN
MAGIX switch Facility Identifier for that trunk.

 NOTE:
Application design should always allow for a calledDevice parameter with
a deviceIDStatus of ID_NOT_KNOWN.

Event Parameters

Table 8-22. CSTANetworkReachedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_NETWORK_REACHED

monitorCrossRefID Network Reached event occurred on this monitor

connection connectionID for the trunk connection to the call
(contains a deviceID that identifies a MERLIN
LEGEND or MERLIN MAGIX CTI facility and a
callID)

trunkUsed identifies a MERLIN LEGEND or MERLIN MAGIX
switch facility

calledDevice destination (usually the dialed digits) If unknown,
the deviceIDStatus component has a value of
ID_NOT_KNOWN.

localConnectionInfo CS_NONE, not provided

cause reason for Network Reached event.

privateData NULL, none present in Network Reached event

Call Events

8-64 Issue 2.2 Programmer’s Guide

Event Scenario Diagram

Figure 8-7 illustrates one possible CSTANetworkReachedEvent scenario.

Before After

D1 D2

(trunk)
C1 c

D1 D2

(trunk)
C1 c c

D2C1 is connection

D2 is trunkUsed

Figure 8-7. CSTANetworkReachedEvent Scenario

Event Causes

Table 8-23. CSTANetworkReachedEvent Causes

EC_NONE The MERLIN LEGEND and MERLIN MAGIX switches provide this
cause in all CSTANetworkReachedEvents.

CSTANetworkReachedEvent

Programmer’s Guide Issue 2.2 8-65

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTANetworkReachedEvent_t networkReached;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTANetworkReachedEvent_t {
 ConnectionID_t connection;
 SubjectDeviceID_t trunkUsed;
 CalledDeviceID_t calledDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTANetworkReachedEvent_t;

Call Events

8-66 Issue 2.2 Programmer’s Guide

Important Feature Interactions

ARS
The calledDevice parameter in the CSTANetworkReachedEvent includes
absorbed digits. The added digits are not included in the calledDevice.

Auto-Dial
An application monitoring a station from which a user uses the Auto-Dial feature
to originate an outgoing trunk call receives a CSTANetworkReachedEvent.

The calledDevice parameter does not include any Pool access code digits.

End-Of-Dial Character
If the call originator dialed a number which terminated with the End-Of-Dial
character (#) or if an application used a CSTA service to originate the call and
terminated the destination number with the End-Of-Dial character, then the
MERLIN LEGEND or MERLIN MAGIX switch generates CSTANetworkReached-
Event on trunk seizure. Applications that desire this event immediately on trunk
seizure should include the End-Of-Dialing character in the destination number in
cstaMakeCall() service requests. For analog trunks, the seizure happens after
the End-of-Dial character is dialed. On PRI trunks, trunk seizure is immediate.

The End-Of-Dial character, when used, does not appear in the calledDevice
parameter in the resulting CSTANetworkReachedEvent.

Marked System Speed Dial
An application monitoring a station from which a user uses the Marked System
Speed Dial feature to originate an outgoing trunk call receives a
CSTANetworkReachedEvent.

The calledDevice parameter contains the system speed dial code and not the
number dialed for the call.

Networking
An application monitoring a station from which a non-local Uniform Dial Plan
(UDP) call is placed receives a CSTANetworkReachedEvent. The
calledDevice parameter in the CSTANetworkReachedEvent contains the
extension number of the called device on the terminating MERLIN LEGEND or
MERLIN MAGIX switch.

.An application monitoring a Calling Group containing a non-local member does
not receive the CSTANetworkReachedEvent when the call leaves the switch.

CSTANetworkReachedEvent

Programmer’s Guide Issue 2.2 8-67

Non-PRI Trunks
If the End-of-Dialing character was not present in the dialed number, then the
MERLIN LEGEND or MERLIN MAGIX switch generates a
CSTANetworkReachedEvent when the end-of-dialing time-out occurs.

Pool Access Code
The calledDevice parameter in a CSTANetworkReachedEvent includes
absorbed digits.

PRI Trunks
If the End-of-Dialing character was not present in the dialed number, then the
MERLIN LEGEND or MERLIN MAGIX switch generates a CSTANetwork-
ReachedEvent when the Central Office signals end-of-dialing.

Redial
An application monitoring a station from which a user uses the Redial feature to
originate a call involving a trunk receives a CSTANetworkReachedEvent.

The calledDevice parameter does not include any Pool code digits.

Save Number Dial
An application monitoring a station from which a user uses the Save Number Dial
feature to originate a call which leaves the switch on a trunk will receive a
CSTANetworkReachedEvent.

The calledDevice parameter does not include any Pool code digits.

Service Observing
An application monitoring the station of a service observer will not receive a
CSTANetworkReachedEvent for calls originating from the station being
observed.

Call Events

8-68 Issue 2.2 Programmer’s Guide

CSTAQueuedEvent

The CSTAQueuedEvent indicates that a call has entered a Calling Group queue.

The MERLIN MAGIX switch provides this event beginning with Release 1.5.
Private data support is added in MERLIN MAGIX Release 2.0.

The MERLIN MAGIX switch provides this event when a Calling Group call has
been queued to a Calling Group. The Calling Group may be any type (e.g., Auto
Login, Auto Logout, etc.).

This event is generated in the following scenarios:

n a call enters a Calling Group queue because no Calling Group members
are available to receive the call

n a DGC call alerting at the station of a Calling Group member is returned to
the queue because it was not answered

n a DGC call is redirected to the queue via the cstaDeflectCall() service

n a Group coverage call has received Calling Group Coverage treatment

When a call has entered a Calling Group queue for any of these reasons, an
application monitoring either the calling party or the Calling Group receives a
CSTAQueuedEvent.

A CSTAQueuedEvent is not generated when a call goes to overflow or to a
support group.

It is possible to receive multiple cstaQueuedEvents for a single call.

CSTAQueuedEvent

Programmer’s Guide Issue 2.2 8-69

Event Parameters

Table 8--24. CSTAQueuedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_QUEUED

monitorCrossRefID event occurred on this monitor

queuedConnection Queued connection (contains deviceID and callID)

queue device where connection is queued

callingDevice the calling device may contain a number identifying
the calling party number. See below for details

calledDevice the called device may contain a number identifying
the called party number. See below for details

lastRedirectionDevice MERLIN MAGIX Release 1.5: not provided. The
deviceIDStatus component always has a value
of ID_NOT_KNOWN.

MERLIN MAGIX Release 2.0 and later: the last
redirection device for the call, when applicable.
When not applicable, the deviceIDStatus
component always has a value of ID_NOT_KNOWN

numberQueued number of calls in the Calling Group queue

localConnectionInfo CS_NONE, not provided

cause reason for Queued event (See Table 8-24)

privateData (Private Data version 2 and later) may contain call
prompting digits, original call information, and/or the
trunk identifier for the call

The callingDevice parameter contains the ANI/ICLID for an external party (when
the trunk provides it) or the extension for a local party. CSTA permits values
indicating “unknown” for certain CSTAQueuedEvent parameters in certain
circumstances. When an incoming call arrives on a trunk that does not provide
ANI/ICLID, the callingDevice has deviceIDStatus of ID_NOT_KNOWN.

! IMPORTANT:
For a CSTAQueuedEvent event to provide the calling number for an
incoming external call, the external call must arrive on either:

n PRI/BRI facilities provisioned to provide ANI.

n trunks that have ICLID-Delay applied by the switch.

Call Events

8-70 Issue 2.2 Programmer’s Guide

When an incoming alerting arrives on a PRI/BRI trunk provisioned to provide
DNIS, the calledDevice parameter contains the PRI Called Number. For other
cases and prior to MERLIN MAGIX Release 2.1, the calledDevice parameter
matches the alertingDevice parameter. Note that the parameter does not
necessarily indicate the device called by the callingDevice.

Beginning with MERLIN MAGIX Release 2.1, the switch populates the TSAPI
calledDevice parameter to identify the device being called. For DGC related calls
the calledDevice parameter is populated as described below:

For incoming external calls, the calledDevice parameter is populated with one of
the following:

n The called number from the ISDN setup message for calls over PRI
facilities

n Calling Group Queue for Calling Group calls over non-PRI facilities and
where the facilities do not terminate on DFT/DPT buttons

n ID_NOT_KNOWN (deviceIDStatus) for Calling Group calls over non-PRI
facilities that terminate on DFT/DPT buttons

For intercom calls, the calledDevice parameter is populated with one of the
following:

n The coverage sender for coverage calls including Calling Group coverage

n The Calling Group Queue for DGC calls

Event Scenario Diagram

Figure 8-8 illustrates one possible CSTAQueuedEvent scenario.

Before After

D1 D2
c

C1

D1 D2qC1c

Figure 8-8. CSTAQueuedEvent Scenario

CSTAQueuedEvent

Programmer’s Guide Issue 2.2 8-71

Event Causes

Table 8--25. CSTAQueuedEvent Causes

EC_CALL_FORWARD Beginning in MERLIN MAGIX Release 2.1, this
cause indicates call has been queued as a result of
Calling Group coverage

EC_NONE Prior to MERLIN MAGIX Release 2.1, this cause is
provided in all CSTAQueuedEvents.
Beginning with MERLIN MAGIX Release 2.1, this
cause indicates call has been queued for a reason
other that Calling Group coverage

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAQueuedEvent_t queued;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAQueuedEvent_t {
 ConnectionID_t queuedConnection;
 SubjectDeviceID_t queue;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 short numberQueued;
 RedirectionDeviceID_t lastRedirectionDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTAQueuedEvent_t;

Call Events

8-72 Issue 2.2 Programmer’s Guide

Private Data Parameters

Table 8-26. CSTAQueuedEvent Private Data Parameters

userEnteredCode Specifies the code/digits that may have been entered
by the Collected Digits feature. If the
userEnteredCode type is set to “ML_UE_NONE”, no
Collected Digits are provided with this event. If the
userEnteredCode code is set to
“ML_CALL_PROMPTER,” Collected Digits are
provided with this event. See the MERLIN MAGIX
Integrated System Feature Reference (CTI Link
Section) for information on how to set up the switch
and application for collecting userEnteredCode
through the Collected Digits feature.

originalCallInfo Specifies the original call information. Note that
information is not repeated in the originalCallInfo, if it
is already reported in the CSTA event parameters.
For example, the callingDevice and calledDevice in
the originalCallInfo will not be set if the
callingDevice and the calledDevice in the CSTA
service parameters are the original calling and called
devices. The callingDevice and calledDevice in the
originalCallInfo will be set only when the original
devices are different from the most recent
callingDevice and calledDevice.

 NOTE:

For the Queued Event corresponding to the newCall
of a Consultation Call to a Calling Group queue, the
originalCallInfo is taken from the activeCall specified
in the Consultation Call request. Thus the application
can pass the original call information between two
calls. The calledDevice of the Consultation Call must
reside on the same switch and must be monitored via
the same Tserver.

The original call information includes:

n reason — the reason for the originalCallInfo.
The following reasons are supported.

ML_OR_NONE — no originalCallInfo provided

ML_OR_CONSULTATION — originalCallInfo
provided

n callingDevice — the original callingDevice
received by the activeCall.

n calledDevice — the original calledDevice
received by the activeCall.

CSTAQueuedEvent

Programmer’s Guide Issue 2.2 8-73

trunkUsed Contains the trunk identifier (e.g. “T801”) when the call
involves a trunk

Private Data Version 2 and 3 Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
MERLIN MAGIX private data library header files (mlpriv.h and mlpdefs.h) for a complete
description.

typedef struct {
 MLEventType_t eventType; /* ML_QUEUED */
 union {
 /* Only the pertinent union element is shown */
 MLQueuedEvent_t queuedEvent;
 } u;
} MLEvent_t;

typedef struct MLQueuedEvent_t {
 MLUserEnteredCode_t userEnteredCode;
 MLOriginalCallInfo_t originalCallInfo;
 DeviceID_t trunkUsed;
} MLQueuedEvent_t;

/*
 * Note: ML_MAX_USER_CODE is defined in mlpriv.h to be the
 * maximum length of the collected digit string.
 */

typedef struct MLUserEnteredCode_t {
 MLUserEnteredCodeType_t type;
 char data[ML_MAX_USER_CODE];
} MLUserEnteredCode_t;

typedef enum MLUserEnteredCodeType_t {
 ML_UE_NONE = -1, /* no collected digits */
 ML_CALL_PROMPTER = 5 /* collected digits */
} MLUserEnteredCodeType_t;

typedef struct MLOriginalCallInfo_t {
 MLReasonForCallInfo_t reason;
 CallingDeviceID_t callingDevice;
 CalledDeviceID_t calledDevice;
 MLUserEnteredCode_t userEnteredCode;
} MLOriginalCallInfo_t;

typedef enum MLReasonForCallInfo_t {
 ML_OR_NONE = 0, /* no OCI present */
 ML_OR_CONSULTATION = 1 /* OCI present */
} MLReasonForCallInfo_t;

Call Events

8-74 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Coverage
An application monitoring a Calling Group Queue that is providing Group
Coverage receives a CSTAQueuedEvent for all calls receiving coverage
treatment. Prior to MERLIN MAGIX Release 2.1, if the call had not alerted at the
sender (i.e., because Do Not Disturb was active), the calledDevice would be the
Calling Group Queue.

Beginning with MERLIN MAGIX Release 2.1, the calledDevice is populated as
described earlier in this section. The lastRedirectionDevice contains the
Coverage Sender.

Group Calling (DGC)
An application monitoring a DGC queue receives a CSTAQueuedEvent when
the call enters the queue because there are no available members, because the
call was alerting at a Calling Group member and returned to the queue, because
the cstaDeflectCall() service was used to redirect the call to the queue, or
because the call is receiving DGC Group Coverage treatment.

CSTARetrievedEvent

Programmer’s Guide Issue 2.2 8-75

CSTARetrievedEvent

The CSTARetrievedEvent indicates that station retrievingDevice retrieved the
retrievedConnection from hold, hold-for-conference, or hold-for-transfer. The
event does not provide any information to indicate from what type of hold the
connection was retrieved.

 NOTE:
The MERLIN LEGEND and MERLIN MAGIX switches do not supply this
event when a call is retrieved from associative hold.

Event Parameters

Table 8-27. CSTARetrievedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_RETRIEVED

monitorCrossRefID Retrieved event occurred on this monitor

retrievedConnection retrieved connection (contains a deviceID and a
callID)

retrievingDevice device where connection was retrieved

localConnectionInfo CS_NONE, not provided

cause reason for Retrieved event

privateData NULL, none present in Retrieved event

Event Scenario Diagram

Figure 8-9 illustrates one possible CSTARetrievedEvent scenario.

Before After

D1 D2 c C1 h

D1 is retrievingDevice

D1 D2 c C1 c

D1C1 is retrievedConnection

Figure 8-9. CSTARetrievedEvent Scenario

Call Events

8-76 Issue 2.2 Programmer’s Guide

Event Causes

Table 8-28. CSTARetrievedEvent Causes

EC_NONE The MERLIN LEGEND and MERLIN MAGIX switches provide this
cause in all CSTARetrievedEvents.

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTARetrievedEvent_t retrieved;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTARetrievedEvent_t {
 ConnectionID_t retrievedConnection;
 SubjectDeviceID_t retrievingDevice;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTARetrievedEvent_t;

CSTARetrievedEvent

Programmer’s Guide Issue 2.2 8-77

Important Feature Interactions

Consultation
An application monitoring a station that has performed a consultation call receives
a CSTARetrievedEvent when the held call is re-accessed.

Service Observing
An application monitoring a station for a service observer receives a CSTA-
EstablishedEvent when an observed call is retrieved from the held state. The
cause will be EC_SILENT_MONITOR.

Transfer
An application monitoring a station that has performed an unsupervised transfer
receives a CSTARetrievedEvent when the transfer originator re-accesses the
call. This happens even if the call is alerting at the transfer destination.

Call Events

8-78 Issue 2.2 Programmer’s Guide

CSTAServiceInitiatedEvent

The CSTAServiceInitiatedEvent indicates that a device initiated a connection.
The MERLIN LEGEND and MERLIN MAGIX switches provide this event when
the initiating device receives dial tone.

 NOTE:
Unlike other events, CSTAServiceInitiatedEvent does not have a
parameter for the device where the event occurred. This is not a mistake.
There is no such parameter for the device in TSAPI or CSTA. Since the
MERLIN LEGEND and MERLIN MAGIX switches use only static device
identifiers, an application may determine the device from the device
component of the initiatedConnection parameter. Alternatively an
application may use the monitorCrossRefID in the event to determine the
device for which the event occurred.

CSTAServiceInitiatedEvent

Programmer’s Guide Issue 2.2 8-79

Event Parameters

Table 8-29. CSTAServiceInitiatedEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_SERVICE_INITIATED

monitorCrossRefID Service Initiated event occurred on this monitor

initiatedConnection initiated connection (contains a deviceID and a
callID)

localConnectionInfo CS_NONE, none provided

cause reason for Service Initiated event

privateData NULL, none present in Service Initiated event

Event Scenario Diagram

Figure 8-10 illustrates one possible CSTAServiceInitiatedEvent scenario.

Before After

D1

D1 C1 i

D1C1 is initiatedConnection

Figure 8-10. CSTAServiceInitiatedEvent Scenario

Call Events

8-80 Issue 2.2 Programmer’s Guide

Event Causes

Table 8-30. CSTAServiceInitiatedEvent Causes

EC_NONE The MERLIN LEGEND and MERLIN MAGIX switches provide this
cause in all CSTAServiceInitiatedEvents.

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAServiceInitiatedEvent_t serviceInitiated;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAServiceInitiatedEvent_t {
 ConnectionID_t initiatedConnection;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTAServiceInitiatedEvent_t;

CSTAServiceInitiatedEvent

Programmer’s Guide Issue 2.2 8-81

Important Feature Interactions

Service Observing
An application monitoring a station that is a service observer does not receive a
CSTAServiceInitiatedEvent for calls originating from the station being observed.

An application monitoring a station that is a service observer receives a CSTA-
ServiceInitiatedEvent when the station goes off-hook on a System Access
button to start observing.

Call Events

8-82 Issue 2.2 Programmer’s Guide

CSTATransferredEvent

The CSTATransferredEvent indicates that station transferringDevice has
transferred a call. Specifically, the transferringDevice station had the connection
primaryOldCall on hold-for-transfer and the connection secondaryOldCall
active and then transferred the primaryOldCall to secondaryOldCall. In a
typical transfer scenario, the transferringDevice placed the primaryOldCall on
hold, then originated the secondaryOldCall to transferredDevice, and then
transferred the call.

An application may use the transfer service to transfer a consultation call.
Consultation calls make information about the original call available to an
application monitoring the extension receiving the consultation call as soon as the
consultation call alerts. Refer to the cstaConsultationCall() manual page for
more information.

n the transferredDevice is a device identifier for the MERLIN LEGEND or
MERLIN MAGIX switch transfer destination6. This is the device to which
the call is transferred (it is not, as the TSAPI name suggests, the transfer
source. A careful reading of TSAPI shows that the TSAPI name is
misleading.) When the transfer destination is a station, or a Calling Group
Queue, transferredDevice contains the extension for that station or
Calling Group Queue. When the transfer destination is a trunk connection
the transferredDevice contains the MERLIN LEGEND or MERLIN MAGIX
switch Facility Identifier for the trunk.

transferConnections provides applications with information so that they may
continue to track calls when the call identifiers change as the transfer merges
calls together. When a trunk connection is a party to the call, the
transferConnections may contain the MERLIN LEGEND or MERLIN MAGIX
switch Facility Identifier for the trunk. The MERLIN LEGEND and MERLIN MAGIX
switches always supply the trunk identifier, ANI, ICLID or dialed digits, never a
pool identifier. Each list item contains:

n a device identifier for a party on the call,

n the connection identifier for the call at that device after the transfer
occurred.

6 The party doing the transferring is the transfer originator. The party being transferred is the

transfer source. The party receiving the transferred call is the transfer destination. Thus, the
activeCall parameter in a cstaConsultationCall() is a connection at the transfer originator for
the call at the transfer source. The calledDevice parameter in a cstaConsultationCall specifies
the transfer destination.

CSTATransferredEvent

Programmer’s Guide Issue 2.2 8-83

 NOTE:
An application should always check transferConnections to track
connection and call identifiers as transfers occur. For the MERLIN
LEGEND and MERLIN MAGIX switches, a transfer of the primaryOldCall
and the secondaryOldCall always results in the secondaryOldCall being
the call identifier for the call. There is no guarantee that this will continue to
be true in future releases. In addition, not all switches operate in this
manner, so a switch-independent application must use the
transferConnections to track connection identifiers and call identifiers.

Event Parameters

Table 8-31. CSTATransferredEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_TRANSFERRED

monitorCrossRefID Transfer event occurred on this monitor

primaryOldCall connection that was held for transfer

secondaryOldCall connection that was active for transfer

transferringDevice transferring device (transfer originator)

transferredDevice device to which the call was transferred (transfer
destination).

transferredConnections list of connections on the transferred call. Each
connection contains a device identifier and a call
identifier.

localConnectionInfo CS_NONE, none provided

cause reason for Transferred event

privateData NULL, not used for this event

Call Events

8-84 Issue 2.2 Programmer’s Guide

Event Scenario Diagram

Figure 8-11 illustrates one possible CSTATransferredEvent scenario.

Before After

D1 D2 C1

h c

D3 C2 c c

D1 is transferringDevice

C1 is primaryOldCall
C2 is secondaryOldCall

D1 D2 c

D3 C2 c

D3 is transferredDevice

Figure 8-11. CSTATransferredEvent Scenario

Event Causes

Table 8-32. CSTATransferredEvent Causes

EC_NEW_CALL The MERLIN LEGEND and MERLIN MAGIX switches
provide EC_NEW_CALL on all CSTATransferredEvents

CSTATransferredEvent

Programmer’s Guide Issue 2.2 8-85

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTATransferredEvent_t transferred;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTATransferredEvent_t {
 ConnectionID_t primaryOldCall;
 ConnectionID_t secondaryOldCall;
 SubjectDeviceID_t transferringDevice;
 SubjectDeviceID_t transferredDevice;
 ConnectionList_t transferredConnections;
 LocalConnectionState_t localConnectionInfo;
 CSTAEventCause_t cause;
} CSTATransferredEvent_t;

Call Events

8-86 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Coverage
For an unsupervised transfer, where the Transfer destination is a Coverage
Sender, the transferredConnections in the CSTATransferredEvent contains
the coverage sender, but will not contain any of the coverage receivers. If for
some reason, the call does not alert at the coverage sender (e.g. Do Not disturb
is active), then the Coverage Sender will also be absent from the
transferredConnections. In either case, the transfer destination will appear as
the transferredDevice in the CSTATransferredEvent.

Group Calling (DGC)
When a user transfers a call to a Calling Group and the call goes directly to a
DGC member, the transferredDevice parameter in the CSTATransferredEvent
will contain the extension of the DGC member.

When a user transfers a call into a Calling Group and the call is queued, then the
transferredDevice parameter will contain the DGC queue.

Networking
An application monitoring the transfer originator when the transfer destination is
on another MERLIN LEGEND or MERLIN MAGIX switch in the private network
will receive a CSTATransferredEvent identifying the connections on the call.

An application monitoring the transfer destination when the transfer originator is
on another MERLIN LEGEND or MERLIN MAGIX switch in the private network
will receive a CSTADeliveredEvent and a CSTAEstablishedEvent for the
consultation call, but these events will not contain any private data for the Original
Call Information. The application will not receive a CSTATransferredEvent.

Pool
When a user transfers a call to a Pool, the transferredDevice parameter in the
CSTATransferredEvent will always contain an individual trunk identifier, not the
Pool extension. Similarly, the transferConnections parameter contains an
individual trunk identifier, not the Pool extension.

Direct Voice Mail
When an external call is transferred to a station’s mailbox using Direct Voice Mail,
the CSTATransferredEvent contains the extension number of the station in the
list of transferred connections even though the station is not on the call. A
CSTAConnectionClearedEvent is then generated to indicate that the station is
not on the call.

Feature Events

Contents

Programmer’s Guide Issue 2.2 9-i

Event Page Format 9-3
CSTACalInfoEvent 9-4
n Event Parameters 9-4
n Event Syntax 9-5
n Important Feature Interactions 9-6

Authorization 9-6
Intercom Calls 9-6
Transfer 9-6

CSTADoNotDisturbEvent 9-7
n Event Parameters 9-7
n Event Syntax 9-7
n Important Feature Interactions 9-8

Extension Programming 9-8
Responding Mode 9-8

9-ii Issue 2.2 Programmer’s Guide

Feature Events

Programmer’s Guide Issue 2.2 9-1

Feature Events indicate a change in feature activation at a device.

Applications use Feature Events to track the activation or deactivation of the Do
Not Disturb feature at an extension and to collect Account Code information. An
application that needs to receive Feature Event Report for a device must:

n Open a stream using the Control Services (Chapter 3);

n Monitor that device using the Monitor Services (Chapter 6);

n Receive events using the Control Services (Chapter 3);

Agent Status Events

9-2 Issue 2.2 Programmer’s Guide

Table 9-1 shows the TSAPI Feature Events that the MERLIN MAGIX switch
provide. Note that MERLIN LEGEND (Release 5.0 and later) and MERLIN
MAGIX Release 1.0 and 1.5 switches do not provide TSAPI Feature events. The
MERLIN MAGIX (Release 2.0 and later) switch provides some but not all of the
TSAPI Feature Events.

Table 9-1. MERLIN MAGIX CTI Support for TSAPI Feature Events

 TSAPI Feature Events for Monitored Stations -
MERLIN MAGIX Release 2.0

 CSTACallInfoEventEvent
√ CSTADoNotDisturbEvent
 CSTAForwardingEvent
 CSTAMessageWaitingEvent

 TSAPI Feature Events for Monitored Stations -

MERLIN MAGIX Release 2.1 and later
√ CSTACallInfoEventEvent
√ CSTADoNotDisturbEvent
 CSTAForwardingEvent
 CSTAMessageWaitingEvent

Event Page Format

Programmer’s Guide Issue 2.2 9-3

Event Page Format

The following pages in this chapter present the TSAPI Feature Report events that
the MERLIN MAGIX switch provides to applications. Each TSAPI event
description contains the following sections, as appropriate:

Event Name and Description

The event name appears first on the pages describing that event. Adescription of
that event immediately follows the name.

Event Parameters

A table lists the event parameters and summarizes their use.

Event Syntax

This section contains C coding information for the event.

Important Feature Interactions

This section describes important interactions with the MERLIN MAGIX switch
features that produce the event.

Agent Status Events

9-4 Issue 2.2 Programmer’s Guide

CSTACalInfoEvent

The CSTACallInfoEvent provides Account Code information entered by a user at
a monitored station. The MERLIN MAGIX switch provides this event beginning
with Release 2.1.

It is possible to receive multiple CSTACallInfoEvents for a single call, but only
from a single extension. The MERLIN MAGIX switch blocks account codes being
entered at more than one extension.

Event Parameters

Table 9-2. CSTACallInfoEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_CALL_INFO

monitorCrossRefID event occurred on this monitor

connection connection (contains deviceID and callID)

device Indicates from which extension account code
information was entered

accountInfo Specifies account code entered at device

authorisationCode Not used

privateData NULL

CSTACalInfoEvent

Programmer’s Guide Issue 2.2 9-5

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files (acs.h, acsdefs.h, csta.h, and cstadefs.h) for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union
 {
 struct {
 cstaMonitorCrossRefID_t monitorCrossRefID;
 union {
 CSTACallInfoEvent_t callInformation;
 } u;
 } cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 ConnectionID_t connection;
 SubjectDeviceID_t device;
 AccountInfo_t accountInfo;
 AuthCode_t authorisationCode;
} CSTACallInfoEvent_t;

typedef char AccountInfo_t[32];
typedef char AuthCode_t[32];

Agent Status Events

9-6 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Authorization
Authorization Codes are not provided by the event.

Intercom Calls
Account Codes can not be entered for intercom calls.

Transfer
An internal transfer destionation may enter an Account Code provided that one
hasen’t already been entered. Any internal party can enter an account code but
once an Account Code has been entered only the extension that entered original
Account can enter another Account Code.

CSTADoNotDisturbEvent

Programmer’s Guide Issue 2.2 9-7

CSTADoNotDisturbEvent

The CSTADoNotDisturbEvent indicates a change in status for the Do Not
Disturb feature at an extension.

The MERLIN MAGIX switch provides this event beginning with MERLIN MAGIX
Release 2.0.

Event Parameters

Table 9-3. CSTADoNotDisturbEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_DO_NOT_DISTURB

monitorCrossRefID event occurred on this monitor

device station that has changed Do Not Disturb status

doNotDisturbOn Specifies the state of Do Not Disturb (0 =
deactivated, 1 = activated)

privateData NULL, not used for this event

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTADoNotDisturbEvent_t doNotDisturb;
 } u;
} CSTAUnsolicitedEvent;

Agent Status Events

9-8 Issue 2.2 Programmer’s Guide

typedef struct CSTADoNotDisturbEvent_t {
 SubjectDeviceID_t device;
 Boolean doNotDisturbOn;
} CSTADoNotDisturbEvent_t;

Important Feature Interactions

Extension Programming
If the Do Not Disturb feature is active at an extension and the Do Not Disturb
button is deleted, the CSTADoNotDisturbEvent will be generated indicating that
the feature has been deactivated.

Responding Mode
When a station transitions from non-responding to responding mode, its Do Not
Disturb feature is deactivated regardless of its state prior to going non-
responding. For MERLIN MAGIX Release 2.0, a CSTADoNotDisturbEvent is
not generated when a station transitions from non-responding to responding
mode, even though the status of the feature may have changed.

Beginning with MERLIN MAGIX Release 2.1, if a station goes non-responding
while it has Do Not Disturb activated, a CSTADoNotDisturbEvent is generated
to indicate that Do Not Disturb is deactivated. When the station returns to
responding mode, the application and the station image are in sync.

Agent Status Events

Contents

Programmer’s Guide Issue 2.2 10-i

Event Page Format 10-3
CSTALoggedOffEvent 10-4
n Event Parameters 10-5
n Event Syntax 10-5
n Important Feature Interactions 10-6

Forwarding 10-6
Group Calling (DGC) 10-6

CSTALoggedOnEvent 10-7
n Event Parameters 10-8
n Event Syntax 10-8
n Important Feature Interactions 10-9

Group Calling (DGC) 10-9
CSTANotReadyEvent 10-10
n Event Parameters 10-10
n Event Syntax 10-11
n Important Feature Interactions 10-11

Administration/Maintenance Mode 10-11
Alarm Clock Mode 10-11
Busy-Out 10-11
Do Not Disturb 10-12
Forced Idle 10-12
Group Calling 10-12
Non-Responding Mode 10-12
Off-Hook 10-12
Personal Directory 10-12
Program Mode 10-12

Contents

10-ii Issue 2.2 Programmer’s Guide

CSTAReadyEvent 10-13
n Event Parameters 10-13
n Event Syntax 10-14
n Important Feature Interactions 10-14

Administration/Maintenance Mode 10-14
Alarm Clock Mode 10-14
Busy-Out 10-14
Do Not Disturb 10-15
Group Calling 10-15
Headset 10-15
Non-Responding Mode 10-15
On-Hook 10-15
Personal Directory 10-15
Program Mode 10-15

CSTAWorkNotReadyEvent 10-16
n Event Parameters 10-17
n Event Syntax 10-18
n Important Feature Interactions 10-18

Group Calling (DGC) 10-18
CSTAWorkReadyEvent 10-19
n Event Parameters 10-20
n Event Syntax 10-21
n Important Feature Interactions 10-21

Group Calling (DGC) 10-21

Agent Status Events

Programmer’s Guide Issue 2.2 10-1

Agent Status Events track changes in agent (Calling Group member) status
occurring at a device. These changes may occur as a result of user activity at the
device, call activity at the device, or the activity of a CTI application.

Applications use Agent Status Events to track agent login state and availability.
Since agent status changes can occur at any time, these messages are
asynchronous. An application that needs to receive Agent Status Events for a
device must:

n Open a stream using the Control Services (Chapter 3);

n Monitor that device using the Monitor Services (Chapter 6);

n Receive events using the Control Services (Chapter 3).

Agent Status Events

10-2 Issue 2.2 Programmer’s Guide

Table 10-1 shows the TSAPI Agent Status Events that the MERLIN MAGIX
switches provide. Note that MERLIN LEGEND (Release 5.0 and later) and
MERLIN MAGIX Release 1.0 switches do not provide TSAPI Agent Status
events. MERLIN MAGIX (Release 1.5 and 2.0) switches provide some but not all
of the TSAPI Agent Status Events.

Table 10-1. MERLIN MAGIX CTI Support for TSAPI Agent Status Events

 TSAPI Agent Status Events - MERLIN MAGIX Release 1.5
√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
 CSTANotReadyEvent
 CSTAReadyEvent

√ CSTAWorkNotReadyEvent
 CSTAWorkReadyEvent

 TSAPI Agent Status Events - MERLIN MAGIX Release 2.0

√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
√ CSTANotReadyEvent
√ CSTAReadyEvent
√ CSTAWorkNotReadyEvent
 CSTAWorkReadyEvent

 TSAPI Agent Status Events - MERLIN MAGIX Release 2.1 and later

√ CSTALoggedOnEvent
√ CSTALoggedOffEvent
√ CSTANotReadyEvent
√ CSTAReadyEvent
√ CSTAWorkNotReadyEvent
√ CSTAWorkReadyEvent

! CAUTION:
When designing an application, be aware of the event parameters that
the MERLIN MAGIX switch provides. The MERLIN MAGIX switch does
not provide all of the optional TSAPI event parameters. The event
manual pages list all of the TSAPI parameters and indicate those that
the MERLIN MAGIX switch provides.

Event Page Format

Programmer’s Guide Issue 2.2 10-3

Event Page Format

The following pages in this chapter present the TSAPI agent events that the
MERLIN MAGIX switch provides to applications. Each TSAPI event description
contains the following sections, as appropriate:

Event Name and Description

The event name appears first on the pages describing that event. A description
of that event immediately follows the name.

Event Parameters

A table lists the event parameters and summarizes their use.

Event Syntax

This section contains C coding information for the event.

Important Feature Interactions

This section describes important interactions with the MERLIN MAGIX switch
features that produce the event.

Agent Status Events

10-4 Issue 2.2 Programmer’s Guide

CSTALoggedOffEvent

The CSTALoggedOffEvent indicates that station agentDevice has logged off.
In MERLIN MAGIX terminology, the Extension Status of agentDevice has
changed to Status 0 (Unavailable). This change may have occurred by any of the
valid means available, including:

n the station user pressing a programmed Extension Status 2 button at
agentDevice

n the station user pressing a programmed Extension Status 1 button (to
enter After Call Work state) at agentDevice

n the station user dialing the Feature Code for Extension Status 0 at
agentDevice

n the DGC supervisor pressing either a programmed button or dialing a
Feature Code to change agentDevice’s status to Extension Status 0

n the successful completion of a cstaSetAgentState() service request with
agentMode AM_LOG_OUT on behalf of agentDevice.

Beginning with MERLIN MAGIX Release 2.1, the there are additional valid means
by the CSTALoggedOffEvent can occur:

n the station user pressing a programmed Logoff button and entering a
agentGroup at agentDevice

n the successful completion of a cstaSetAgentState() service request with
agentMode AM_LOG_OUT and agentGroup calling-group, on behalf of
agentDevice

n the station user dialing the Feature Code for Logoff and then entering an
agentGroup at agentDevice.

Because the MERLIN MAGIX switch supports members logging in and out
independent of their Calling Group membership, this event is generated for an
extension logging off even when the station is not a Calling Group member.

The MERLIN MAGIX switch provides this event beginning with Release 1.5.

CSTALoggedOffEvent

Programmer’s Guide Issue 2.2 10-5

Event Parameters

Table 10-2. CSTALoggedOffEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_LOGGED_OFF

monitorCrossRefID event occurred on this monitor

agentDevice station that has logged out

agentID same as agentDevice

agentGroup the Calling Group that agentDevice has logged
out off, or NULL

privateData NULL, not used for this event

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTALoggedOffEvent_t loggedOff;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTALoggedOffEvent_t {
 SubjectDeviceID_t agentDevice;
 AgentID_t agentID;
 AgentGroup_t agentGroup;
} CSTALoggedOffEvent_t;

typedef char AgentID_t[32];

Agent Status Events

10-6 Issue 2.2 Programmer’s Guide

typedef DeviceID_t AgentGroup_t;

Important Feature Interactions

Forwarding
A CSTALoggedOffEvent is generated when a Calling Group member activates
forwarding, whether or not the member was available.

Group Calling (DGC)
A CSTALoggedOffEvent is generated regardless of how an agent logs out
(either via a feature code, programmed button or successful cstaSetAgent-
State() request), even if the station was already logged out. If the station is not a
member of a Calling Group, the agentGroup parameter will be NULL.

Beginning with MERLIN MAGIX Release 2.1, when the station is not a member of
a Calling Group, and the agent performs a selective log out, the agentGroup
parameter will contain the Calling Group that the agent logged out of.

CSTALoggedOnEvent

Programmer’s Guide Issue 2.2 10-7

CSTALoggedOnEvent

The CSTALoggedOnEvent indicates that station agentDevice has logged on.
In MERLIN MAGIX terminology, the Extension Status of agentDevice has
changed to Status 2 (Available). This change may have occurred by any of the
valid means available, including:

n the station user pressing a programmed Extension Status 2 button at
agentDevice

n the station user dialing the Feature Code for Extension Status 2 at
agentDevice

n the DGC supervisor pressing either a programmed button or dialing a
Feature Code to change agentDevice’s status to Extension Status 2

n the successful completion of a cstaSetAgentState() service request with
agentMode AM_LOG_IN on behalf of agentDevice.

Beginning with MERLIN MAGIX Release 2.1, the there are additional valid means
by which the CSTALoggedOnEvent can occur:

n the station user pressing a programmed Logon button and entering an
agentGroup at agentDevice

n the successful completion of a cstaSetAgentState() service request with
agentMode AM_LOG_IN and agentGroup calling-group, on behalf of
agentDevice

n the station user dialing the Feature Code for Logon and then entering a
Calling Group at agentDevice.

Because the MERLIN MAGIX switch supports members logging in and out
independent of their Calling Group membership, this event is generated for an
extension logging in even when the station is not a Calling Group member.

The MERLIN MAGIX switch provides this event beginning with Release 1.5.

Agent Status Events

10-8 Issue 2.2 Programmer’s Guide

Event Parameters

Table 10-3. CSTALoggedOnEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_LOGGED_ON

monitorCrossRefID event occurred on this monitor

agentDevice station that has logged in

agentID same as agentDevice

agentGroup the Calling Group of which agentDevice is a
member, or NULL if the agentDevice is not a
Calling Group member.

password NULL, not used for this event

privateData NULL, not used for this event

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTALoggedOnEvent_t loggedOn;
 } u;
} CSTAUnsolicitedEvent;

CSTALoggedOnEvent

Programmer’s Guide Issue 2.2 10-9

typedef struct CSTALoggedOnEvent_t {
 SubjectDeviceID_t agentDevice;
 AgentID_t agentID;
 AgentGroup_t agentGroup;
 AgentPassword_t password;
} CSTALoggedOnEvent_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

Important Feature Interactions

Group Calling (DGC)
The CSTALoggedOnEvent is generated regardless of how an agent logs in
(either via a feature code, programmed button, or successful cstaSetAgent-
State() request), even if the station is already logged in. If the station is not a
member of a Calling Group, the agentGroup parameter will be NULL.

Beginning with MERLIN MAGIX Release 2.1, if the station is not a member of a
Calling Group, and the agent performs a selective login, the agentGroup
parameter will contain the Calling Group that the agent logged into.

Agent Status Events

10-10 Issue 2.2 Programmer’s Guide

CSTANotReadyEvent

The CSTANotReadyEvent indicates that an extension has become unavailable
to accept a Calling Group call. All monitored stations receive this event
regardless of Calling Group membership. This event is generated when an
extension is initially available to accept a call and then becomes busy through
one of the following actions:

n the station goes off-hook

n the station activates the Do Not Disturb feature

n the station becomes non-responding (i.e., is unplugged)

n the station enters Program Mode

n the station enters Administration Mode

n the station enters Maintenance Mode

n the station enters Alarm Clock Mode

n the station enters Personal Directory Program Mode

n the station, port, or slot for the station is busied-out

n the station is forced-idle

The MERLIN MAGIX switch provides this event beginning with Release 2.0.

Event Parameters

Table 10-4. CSTANotReadyEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_NOT_READY

monitorCrossRefID event occurred on this monitor

agentDevice station that is not ready

agentID same as agentDevice

privateData NULL, not used for this event

CSTANotReadyEvent

Programmer’s Guide Issue 2.2 10-11

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTANotReadyEvent_t notReady;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTANotReadyEvent_t {
 SubjectDeviceID_t agentDevice;
 AgentID_t agentID;
} CSTANotReadyEvent_t;

typedef char AgentID_t[32];

Important Feature Interactions

Administration/Maintenance Mode
An application monitoring the station that is the administration port will receive a
CSTANotReadyEvent when the station enters Administration or Maintenance
mode.

Alarm Clock Mode
An application monitoring an extension will receive a CSTANotReadyEvent
when the station enters Alarm Clock Mode.

Busy-Out
An application monitoring an extension will receive a CSTANotReadyEvent
when the station port or board for that station is busied-out.

Agent Status Events

10-12 Issue 2.2 Programmer’s Guide

Do Not Disturb
An application monitoring an extension will receive a CSTANotReadyEvent and
a CSTADoNotDisturbEvent when the station activates Do Not Disturb.

Forced Idle
An application monitoring an extension will receive a CSTANotReadyEvent
when the station is forced idled.

Group Calling
An application monitoring an extension will receive a CSTANotReadyEvent
regardless of Calling Group membership.

Non-Responding Mode
An application monitoring a MLX, 4400-series or ETR station (not administered as
Tip/Ring) will receive a CSTANotReadyEvent when the station is unplugged.

Off-Hook
An application monitoring an extension will receive a CSTANotReadyEvent
when the station goes off-hook.

Personal Directory
An application monitoring an extension will receive a CSTANotReadyEvent
when the station enters Personal Directory Program Mode, either at the station or
via Administration.

Program Mode
An application monitoring an extension will receive a CSTANotReadyEvent
when the station enters Program Mode or when the station is being programmed
via Centralized Station Programming.

CSTAReadyEvent

Programmer’s Guide Issue 2.2 10-13

CSTAReadyEvent

The CSTAReadyEvent indicates that an extension is available to accept a
Calling Group call. All monitored stations receive this event regardless of Calling
Group membership. This event is generated when an extension is initially busy
and then becomes not busy through one or more of the following actions:

n the station goes on-hook

n the station deactivates the Do Not Disturb feature

n the station that was non-responding (i.e., is unplugged) becomes
responding

n the station leaves Program Mode

n the station leaves Administration Mode

n the station leaves Maintenance Mode

n the station leaves Alarm Clock Mode

n the station leaves Personal Directory Program Mode

n the station, port, or slot for the station is restored from a busy-out

The MERLIN MAGIX switch provides this event beginning with Release 2.0.

Event Parameters

Table 10-5. CSTAReadyEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_READY

monitorCrossRefID event occurred on this monitor

agentDevice station that is ready

agentID same as agentDevice

privateData NULL, not used for this event

Agent Status Events

10-14 Issue 2.2 Programmer’s Guide

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAReadyEvent_t ready;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAReadyEvent_t {
 SubjectDeviceID_t agentDevice;
 AgentID_t agentID;
} CSTAReadyEvent_t;

typedef char AgentID_t[32];

Important Feature Interactions

Administration/Maintenance Mode
An application monitoring the station that is the administration port may receive a
CSTAReadyEvent when the station leaves Administration or Maintenance mode.

Alarm Clock Mode
An application monitoring an extension may receive a CSTAReadyEvent when
the station leaves Alarm Clock Mode.

Busy-Out
An application monitoring an extension may receive a CSTAReadyEvent when
the station port or board for that station is restored after a busy-out.

CSTAReadyEvent

Programmer’s Guide Issue 2.2 10-15

Do Not Disturb
An application monitoring an extension may receive a CSTAReadyEvent and a
CSTADoNotDisturbEvent when the station deactivates Do Not Disturb.

Group Calling
An application monitoring an extension will receive a CSTAReadyEvent
regardless of Calling Group membership.

Headset
An application monitoring an extension in headset mode will receive a
CSTAReadyEvent when the far end hangs up the call.

Non-Responding Mode
An application monitoring a non-responding MLX, 4400-series or ETR station (not
administered as a Tip/Ring) may receive a CSTAReadyEvent if the station that is
non-responding is plugged in.

On-Hook
An application monitoring an extension may receive a CSTAReadyEvent when
the station goes on-hook.

Personal Directory
An application monitoring an extension may receive a CSTAReadyEvent when
the station leaves Personal Directory Programming (either at the station or via
Administration).

Program Mode
An application monitoring an extension may receive a CSTAReadyEvent when
the station leaves Program Mode or when Centralized Station Programming is
exited for that station.

Agent Status Events

10-16 Issue 2.2 Programmer’s Guide

CSTAWorkNotReadyEvent

The MERLIN MAGIX switch provides this event beginning with Release 1.5.

The CSTAWorkNotReadyEvent indicates that station agentDevice has gone
into After Call Work mode (Extension Status 1) or Auxiliary Work Time (beginning
with MERLIN MAGIX Release 2.1. The change in agent status may have
occurred by any of the valid means available, including:

n the station user pressing a programmed Extension Status 1 (After Call
Work) button at agentDevice

n the station user pressing a programmed Auxiliary Work Time button at
agentDevice

n the station user dialing the Feature Code for Extension Status 1 at
agentDevice

n the station user dialing the Feature Code for Auxiliary Work Time at
agentDevice

n the DGC supervisor pressing either a programmed button or dialing a
Feature Code to change agentDevice’s status to Extension Status 1

n the DGC supervisor pressing either a programmed button or dialing a
Feature Code to change agentDevice’s mode to Auxiliary Work Time

n the successful completion of a cstaSetAgentState() service request with
agentMode AM_WORK_NOT_READY on behalf of agentDevice.

Beginning with MERLIN MAGIX Release 2.1, an agent station can be assigned
membership in multiple Calling Groups. As part of this change the Auxiliary Work
Time mode was introduced. Systems configured with multi-group membership for
agent stations will generally use Auxilary Work Time buttons rather than After Call
Work buttons.

Because the MERLIN MAGIX switch supports members entering After Call Work
or Auxiliary Wort Time mode independent of their Calling Group membership, this
event is generated for an extension entering After Call Work or Auxiliary Work
Time mode, even if the station is not a Calling Group member.

CSTAWorkNotReadyEvent

Programmer’s Guide Issue 2.2 10-17

Event Parameters

Table 10-6. CSTAWorkNotReadyEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_WORK_NOT_READY

monitorCrossRefID event occurred on this monitor

agentDevice station that has gone into Auxiliary Work Time or
After Call Work mode

agentID same as agentDevice

privateData NULL, not used for this event

Agent Status Events

10-18 Issue 2.2 Programmer’s Guide

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAWorkNotReadyEvent_t workNotReady;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAWorkNotReadyEvent_t {
 SubjectDeviceID_t agentDevice;
 AgentID_t agentID;
} CSTAWorkNotReadyEvent_t;

typedef char AgentID_t[32];

Important Feature Interactions

Group Calling (DGC)
An application monitoring an extension will receive a CSTAWorkNotReadyEvent
regardless of how the extension enters Auxiliary Work Time or After Call Work
mode, even if the station was already in Auxiliary Work Time or After Call Work
mode, and regardless of Calling Group membership.

CSTAWorkReadyEvent

Programmer’s Guide Issue 2.2 10-19

CSTAWorkReadyEvent

The MERLIN MAGIX switch provides this event beginning with Release 2.1.

The CSTAWorkReadyEvent indicates that station agentDevice has exited out of
After Call Work mode (Extension Status 1) or Auxiliary Work Time (beginning with
MERLIN MAGIX Release 2.1). This event indicates a transition from agent state,
AG_WORK_NOT_READY to AG_WORK_READY. This transition may have occurred
by any of the valid means available, including:

n the station user pressing a programmed After Call Work button at
agentDevice

n the station user pressing a programmed Auxiliary Work Time button at
agentDevice

n the station user dialing the Feature Code for After Call Work button at
agentDevice

n The station user dialing the Feature Code for Auxiliary Work Time at
agentDevice

n the DGC supervisor pressing either a programmed button or dialing a
Feature Code to take agentDevice out of After Call Work mode

n the DGC supervisor pressing either a programmed button or dialing a
Feature Code to take agentDevice out of Auxiliary Work Time mode

n the successful completion of a cstaSetAgentState() service request with
agentMode AM_WORK_READY on behalf of agentDevice.

Beginning with MERLIN MAGIX Release 2.1, an agent station can be assigned
membership in multiple Calling Groups. As part of this change the Auxiliary Work
Time mode was introduced. Systems configured with multi-group membership for
agent stations will generally use Auxilary Work Time buttons rather than After Call
Work buttons.

Because the MERLIN MAGIX switch supports members entering the After Call
Work or Auxiliary Work Time mode independent of their Calling Group
membership, this event is generated for an extension exiting After Call Work or
Auxiliary Work Time mode, even if the station is not a Calling Group member.

Agent Status Events

10-20 Issue 2.2 Programmer’s Guide

Event Parameters

Table 10-7. CSTAWorkReadyEvent Parameters

acsHandle ACS stream on which event arrived

eventClass CSTAUNSOLICITED

eventType CSTA_WORK_READY

monitorCrossRefID event occurred on this monitor

agentDevice station exiting Agent Work Time of After Call
Work mode

agentID same as agentDevice

privateData NULL, not used for this event

CSTAWorkReadyEvent

Programmer’s Guide Issue 2.2 10-21

Event Syntax

The syntax below shows only the relevant portions of structures and unions. Refer to the
TSAPI header files for a complete description.

typedef struct {
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct {
 ACSEventHeader_t eventHeader;
 union {
 CSTAUnsolicitedEvent cstaUnsolicited;
 } event;
} CSTAEvent_t;

typedef struct {
 CSTAMonitorCrossRefID_t monitorCrossRefId;
 union {
 CSTAWorkReadyEvent_t workReady;
 } u;
} CSTAUnsolicitedEvent;

typedef struct CSTAWorkReadyEvent_t {
 SubjectDeviceID_t agentDevice;
 AgentID_t agentID;
} CSTAWorkReadyEvent_t;

typedef char AgentID_t[32];

Important Feature Interactions

Group Calling (DGC)
An application monitoring an extension will receive a CSTAWorkReadyEvent
regardless of how an extension exits Auxiliary Work Time or After Call Work
mode, even if the station was not in Auxiliary Work Time or After Call Work mode,
and regardless of Calling Group membership.

Agent Status Events

10-22 Issue 2.2 Programmer’s Guide

Escape Services

Contents

Programmer’s Guide Issue 2.2 11-i

Requesting Escape Services and Receiving
Confirmations 11-2

Escape Service Request Failures 11-2
Escape Service Page Format 11-3
mlGetDGCGroupList() 11-5
n Service Request Parameters 11-6
n Return Values 11-6
n Confirmation Event - CSTAEscapeServiceConfEvent 11-6
n Confirmation Event Private Data 11-7
n Private Event Parameters 11-7
n CSTA Universal Failure Confirmation Event Errors 11-8
n Request Syntax 11-8
n Confirmation Event Syntax 11-9
n Private Event Syntax 11-10
n Important Feature Interactions 11-11

Group Calling (DGC) 11-11
Networking 11-11
Renumbering 11-11

mlGetDGCGroupMemberList() 11-12
n Service Request Parameters 11-13
n Private Service Request Parameters 11-13
n Return Values 11-13
n Confirmation Event - CSTAEscapeServiceConfEvent 11-14
n Confirmation Event Private Data 11-14
n Private Event Parameters 11-15
n CSTA Universal Failure Confirmation Event Errors 11-16
n Request Syntax 11-16
n Confirmation Event Syntax 11-17
n Private Event Syntax 11-18
n Important Feature Interactions 11-19

Contents

11-ii Issue 2.2 Programmer’s Guide

Group Calling (DGC) 11-19
Networking 11-19
Renumbering 11-19

mlGetDGCGroupTrunkList() 11-20
n Service Request Parameters 11-21
n Private Service Request Parameters 11-21
n Return Values 11-21
n Confirmation Event - CSTAEscapeServiceConfEvent 11-22
n Confirmation Event Private Data 11-22
n Private Event Parameters 11-23
n Private Event Private Data 11-23
n CSTA Universal Failure Confirmation Event Errors 11-24
n Request Syntax 11-24
n Confirmation Event Syntax 11-25
n Private Event Syntax 11-26
n Important Feature Interactions 11-27

Networking 11-27
Pools 11-27
Renumbering 11-27

mlQueryDGCGroupDAUInfo() 11-28
n Service Request Parameters 11-28
n Private Service Request Parameters 11-28
n Return Values 11-28
n Confirmation Event - CSTAEscapeServiceConfEvent 11-29
n Confirmation Event Private Data 11-29
n CSTA Universal Failure Confirmation Event Errors 11-30
n Request Syntax 11-30
n Confirmation Event Syntax 11-31
n Important Feature Interactions 11-32

Networking 11-32
mlQueryDGCGroupParameters() 11-33
n Service Request Parameters 11-33
n Private Service Request Parameters 11-33
n Return Values 11-33
n Confirmation Event - CSTAEscapeServiceConfEvent 11-34
n Confirmation Event Private Data 11-35
n CSTA Universal Failure Confirmation Event Errors 11-36
n Request Syntax 11-36
n Confirmation Event Syntax 11-37
n Important Feature Interactions 11-38

Networking 11-38

Contents

Programmer’s Guide Issue 2.2 11-iii

mlQueryDGCQueueStatus() 11-39
n Service Request Parameters 11-39
n Private Service Request Parameters 11-39
n Return Values 11-39
n Confirmation Event - CSTAEscapeServiceConfEvent 11-40
n Confirmation Event Private Data 11-40
n CSTA Universal Failure Confirmation Event Errors 11-41
n Request Syntax 11-41
n Confirmation Event Syntax 11-42
n Important Feature Interactions 11-43

Group Calling (DGC) 11-43
Networking 11-43

mlQueryDeviceName() 11-44
n Service Request Parameters 11-44
n Private Service Request Parameters 11-44
n Return Values 11-44
n Confirmation Event - CSTAEscapeServiceConfEvent 11-45
n Confirmation Event Private Data 11-45
n CSTA Universal Failure Confirmation Event Errors 11-46
n Request Syntax 11-46
n Confirmation Event Syntax 11-47
n Important Feature Interactions 11-48

Busy-Out 11-48
Demand Test 11-48
Direct Facility Termination (DFT) 11-48
Group Calling 11-48
Labels 11-48
Lines 11-48
Maintenance Busy Mode 11-48
Normal/Responding Mode 11-48
Outgoing Calls 11-48
Page Zones 11-48
Park Zones 11-49
Pools 11-49
Provisioning 11-49
Slot Reset/Busy-out 11-49
Station Modes 11-49
Trunk Test 11-49
UDP/Networking 11-49

Contents

11-iv Issue 2.2 Programmer’s Guide

mlQueryTrunkStatus() 11-50
n Service Request Parameters 11-50
n Private Service Request Parameters 11-50
n Return Values 11-51
n Confirmation Event - CSTAEscapeServiceConfEvent 11-51
n Confirmation Event Private Data 11-51
n CSTA Universal Failure Confirmation Event Errors 11-52
n Request Syntax 11-52
n Confirmation Event Syntax 11-53
n Important Feature Interactions 11-54

Auto Maintenance 11-54
Busy-Out 11-54
Demand Test 11-54
Direct Facility Termination (DFT) 11-54
E911 11-54
Group Calling (DGC) 11-54
Hold 11-54
Incoming Calls 11-54
Lines/Trunks 11-54
Loudspeaker Page 11-55
Music-On-Hold 11-55
Networking 11-55
Outgoing Calls 11-55
Phantom Board 11-55
Pools 11-55
Provisioning 11-55
Ringing Options 11-55
Slot Reset/Busy-out 11-55
Slot Restore 11-56
T1 and PRI lines 11-56

Escape Services

Programmer’s Guide Issue 2.2 11-1

Applications use Escape Services to obtain access to switch services which are
not defined by the CSTA standard.

Table 11-1 shows the Escape Services supported beginning with MERLIN
MAGIX Release 2.0.

Table 11-1. MERLIN MAGIX CTI Support for Escape Services

Escape Services - MERLIN MAGIX Release 2.0
mlGetDGCGroupList() and mlGetDGCGroupListConfEvent
mlGetDGCGroupMemberList() and

mlGetDGCGroupMemberListConfEvent
mlGetDGCGroupTrunkList() and mlGetDGCGroupTrunkListConfEvent
mlQueryDGCQueueStatus() and mlQueryDGCQueueStatusConfEvent
mlQueryDeviceName() and mlQueryDeviceNameConfEvent
mlQueryTrunkStatus() and mlQueryTrunkStatusEvent

Escape Services - MERLIN MAGIX Release 2.1 and later
mlGetDGCGroupList() and mlGetDGCGroupListConfEvent
mlGetDGCGroupMemberList() and

mlGetDGCGroupMemberListConfEvent
mlGetDGCGroupTrunkList() and mlGetDGCGroupTrunkListConfEvent
mlQueryDGCQueueStatus() and mlQueryDGCQueueStatusConfEvent
mlQueryDeviceName() and mlQueryDeviceNameConfEvent
mlQueryTrunkStatus() and mlQueryTrunkStatusEvent
mlQueryDGCGroupDAUInfo() and mlQueryDGCGroupDAUInfoConfEvent
mlQueryDGCGroupParameters() and

mlQueryDGCGroupParametersConfEvent

Escape Services

11-2 Issue 2.2 Programmer’s Guide

Requesting Escape Services and
Receiving Confirmations

For each MERLIN MAGIX Escape Service, a private data function is provided in
the private data library. The private data function initializes a private data buffer
with the service type and service parameters. The application calls
cstaEscapeService() with a pointer to the initialized buffer to invoke the service
request.

Each Escape Service request has an associated confirmation event. Some
Escape Services also result in the application receiving private events. This book
presents information about each service’s confirmation event (and private event)
under the heading for the service.

An application must receive the confirmation event (or private event) on the
stream where it sends the Escape Service request. “Receiving Events” in
Chapter 3 describes how applications receive confirmation events. “Extracting
Private Data from Events” in Chapter 2 explains how an application extracts
MERLIN MAGIX private data from the events

Confirmations have different meanings for various services. Refer to the manual
page for each service when coding applications so as to use the service
confirmations properly. In some cases, an application must wait for subsequent
Private Events to receive the results of a query.

Escape Service Request Failures

If the service request fails for some reason, the application will receive a
CSTAUniversalFailureConfEvent in place of the service confirmation. Each
service description includes a list of the error values that the
CSTAUniversalFailureConfEvent may carry for that service as well as the
meanings of those values in the context of that service. Since the
CSTAUniversalFailureConfEvent applies to other services, as well as Escape
services, its description is found in the section pertaining to
CSTAUniversalFailureConfEvent in Chapter 3.

Escape Service Page Format

Programmer’s Guide Issue 2.2 11-3

Escape Service Page Format

The pages describing each TSAPI escape service contain the following sections,
as appropriate:

Service Name and Description

The service name appears first. A description of that service immediately follows
the name.

Service Request Parameters

A table lists the service request parameters and summarizes their use.

Private Service Request Parameters

A table lists the private service parameters and summarizes their use.

Return Values

A table lists the return values for the service request.

In all function returns, success values follow the TSAPI rules. If the requesting
application generated the invokeID value, then a successful function call returns
zero. If the TSAPI library generates the invokeID value, then a successful
function call returns the value of the invokeID. This is not explicitly re-stated for
each service. “Sending TSAPI Requests and Receiving Confirmations” in
Chapter 3 describes invokeID usage in more detail.

Confirmation Event

This section names the TSAPI confirmation event for the service and contains a
table describing the confirmation event parameters.

Confirmation Event Private Data

This section names the MERLIN MAGIX private data confirmation event for the
service and contains a table describing the private confirmation event
parameters.

Private Event Parameters

This section names the MERLIN MAGIX private event for the service and
contains a table describing the private event parameters for the service.

CSTA Universal Failure Confirmation Event Error
Values

This section lists error values that the CSTAUniversalFailureConfEvent may
return to an application when a service request fails. Items in all capitals are
#defines from the TSAPI header files (acs.h, acsdefs.h, csta.h, and cstadefs.h).

Escape Services

11-4 Issue 2.2 Programmer’s Guide

Request Syntax

This section contains C coding information for the service request.

Confirmation Event Syntax

This section contains C coding information for the service’s confirmation event.

Private Event Syntax

This section contains C coding information for the service’s private event.

Important Feature Interactions

This section describes important interactions between the Escape Service and
MERLIN MAGIX switch features.

mlGetDGCGroupList()

Programmer’s Guide Issue 2.2 11-5

mlGetDGCGroupList()

The mlGetDGCGroupList() escape service is introduced in MERLIN MAGIX
Release 2.0 with private data version 2. This service allows an application to
obtain a list of local Calling Groups. Once an application has the Calling Group
IDs, it is able to monitor the Calling Groups. This enables an application to do
statistical reporting or to manage Calling Group calls.

To allow applications to operate more efficiently, the list of Calling Groups
generated by the mlGetDGCGroupList() escape service only includes a Calling
Group if at least one of the following conditions are met:

n a local member is assigned to the Calling Group

n a line is assigned to the Calling Group

n a pool is assigned to the Calling Group

n a Primary Delay Announcement Unit is assigned to the Calling Group

n a Secondary Delay Announcement Unit is assigned to the Calling Group

n an external alert is administered for the Calling Group

n an overflow group is administered for the Calling Group

n a support group is administered for the Calling Group

The list of Calling Groups generated by the mlGetDGCGroupList() escape
service will not include non-local Calling Groups.

Because the volume of data requested by this service may be large, the actual list
of Calling Groups is not returned in the confirmation event. The confirmation
event provides a unique private event cross-reference ID that associates
subsequent CSTAPrivateEvents (containing the actual list of Calling Groups)
with the original request. The private event cross reference ID is the only data
returned in the confirmation event.

After returning the confirmation event, the service returns a sequence of
CSTAPrivateEvents. Each CSTAPrivateEvent contains the private event cross
reference ID, and a list. The list contains the number of elements in the message,
and up to ten Calling Groups.

The service provides the private event cross reference ID in case an application
has issued multiple mlGetDGCGroupList() requests. The final
CSTAPrivateEvent specifies that it contains zero Calling Groups and serves to
inform the application that no more messages will be sent in response to this
query.

Escape Services

11-6 Issue 2.2 Programmer’s Guide

Service Request Parameters

Table 11-2. cstaEscapeService() Parameters for mlGetDGCGroupList()

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

privateData private data buffer initialized by
mlGetDGCGroupList()

Return Values

Table 11-3. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-4. CSTAEscapeServiceConfEvent Parameters for
mlGetDGCGroupList()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_GETDGC_GROUP_LIST_CONF event

mlGetDGCGroupList()

Programmer’s Guide Issue 2.2 11-7

Confirmation Event Private Data

The CSTAEscapeServiceConfEvent will contain MERLIN MAGIX private data.

Table 11-5. mlGetDGCGroupList() Confirmation Event Private Data
Parameters

eventType ML_GETDGC_GROUP_LIST_CONF
privEventCrossRefID a unique ID that associates subsequent

CSTAPrivateEvents with this request

Private Event Parameters

Following the receipt of the CSTAEscapeServiceConfEvent, the application will
receive one or more CSTAPrivateEvents containing MERLIN MAGIX private
data.

Table 11-6. mlGetDGCGroupList() CSTAPrivateEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTAEVENTREPORT

eventType CSTA_PRIVATE

privateData private data buffer containing an
ML_GETDGC_GROUP_LIST_RESP event

Table 11-7. mlGetDGCGroupList() CSTAPrivateEvent Private Data
Parameters

eventType ML_GETDGC_GROUP_LIST_RESP
privEventCrossRefID a unique ID that associates this CSTAPrivateEvent

with the service request

list a list structure containing the following information:
a count (0-10) of how many Calling Group IDs are in
this response, and an array (groupID[]) containing
up to 10 Calling Group IDs. A count of 0 indicates
that this is the last CSTAPrivateEvent for the service
request.

Escape Services

11-8 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to a mlGetDGCGroupList() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALID_FEATURE – The application requested the escape service on a stream
opened with private data version 1 stream, or on a stream opened without
private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
mlGetDGCGroupList() request exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION – The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION – A Telephony Server or MERLIN MAGIX
PBX driver resource limitation prevented the system from processing the
request.

Request Syntax

mlGetDGCGroupList (MLPrivateData_t *privateData);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

mlGetDGCGroupList()

Programmer’s Guide Issue 2.2 11-9

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t {
 MLEventType_t eventType;
 union
 {
 MLGetDGCGroupListConfEvent_t getDGCGroupList;
 } u;
} MLEvent_t;

typedef struct MLGetDGCGroupListConfEvent_t
{
 MLPrivEventCrossRefID_t privEventCrossRefID;
} MLGetDGCGroupListConfEvent_t;

Escape Services

11-10 Issue 2.2 Programmer’s Guide

Private Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAEventReport cstaEventReport;
 } event;
} CSTAEvent_t;

typedef struct
{
 union
 {
 CSTAPrivateEvent_t privateEvent;
 } u;
} CSTAEventReport;

typedef struct CSTAPrivateEvent_t
{
 Nulltype null;
} CSTAPrivateEvent_t;

 union
 {
 MLGetDGCGroupListResp_t MLGetDGCGroupListResp;
 } u;
} MLEvent_t;

typedef struct MLGetDGCGroupListResp_t
{
 MLPrivEventCrossRefID_t privEventCrossRefID;
 struct
 {
 short count;
 DeviceID_t groupID[10];
 } list;
} MLGetDGCGroupListResp_t;

mlGetDGCGroupList()

Programmer’s Guide Issue 2.2 11-11

Important Feature Interactions

Group Calling (DGC)
The list of Calling Groups generated by the mlGetDGCGroupList() escape
service will only include a Calling Group if at least one of the following conditions
are met:

n a local member is assigned to the Calling Group

n a line is assigned to the Calling Group

n a pool is assigned to the Calling Group

n a Primary Delay Announcement Unit is assigned to the Calling Group

n a Secondary Delay Announcement Unit is assigned to the Calling Group

n an external alert is administered for the Calling Group

n an overflow group is administered for the Calling Group

n a support group is administered for the Calling Group

Networking
The list of Calling Groups generated by the mlGetDGCGroupList() escape
service will not include any Calling Group that contains a non-local member.

Renumbering
If Calling Groups are renumbered on the switch, a subsequent mlGetDGC-
GroupList() escape service request will return the new Calling Group numbers.

Escape Services

11-12 Issue 2.2 Programmer’s Guide

mlGetDGCGroupMemberList()

The mlGetDGCGroupMemberList() escape service is introduced in MERLIN
MAGIX Release 2.0 with private data version 2. The service allows an
application to obtain a list of Calling Group members for a specific local Calling
Group.

Because the volume of data requested by this service may be large, the actual list
of Calling Group members is not returned in the confirmation event. The
confirmation event provides a unique private event cross reference ID that
associates subsequent CSTAPrivateEvents (containing the actual list of Calling
Group members) with the original request. The private event cross reference ID is
the only data returned in the confirmation event.

After returning the confirmation event, the service returns a sequence of
CSTAPrivateEvents. Each CSTAPrivateEvent contains the private event cross
reference ID, and a list. The list contains the number of elements in the message,
and up to 10 Calling Group members.

The service provides the private event cross reference ID in case an application
has issued multiple mlGetDGCGroupMemberList() requests. The final
CSTAPrivateEvent specifies that it contains zero Calling Group members and
serves to inform the application that no more messages will be sent in response
to this query.

mlGetDGCGroupMemberList()

Programmer’s Guide Issue 2.2 11-13

Service Request Parameters

Table 11-8. cstaEscapeService() Parameters for mlGetDGCGroupMember-
List()

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

privateData private data buffer initialized by calling
mlGetDGCGroupMemberList()

Private Service Request Parameters

Table 11-9. mlGetDGCGroupMemberList() Private Service Request
Parameters

dgcID Calling Group number of the group being queried

Return Values

Table 11-10. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Escape Services

11-14 Issue 2.2 Programmer’s Guide

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-11. CSTAEscapeServiceConfEvent Parameters for
mlGetDGCGroupMemberList()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_GETDGC_GROUP_MEMBER_LIST_CONF event

Confirmation Event Private Data

The CSTAEscapeServiceConfEvent will contain MERLIN MAGIX private data.

Table 11-12. mlGetDGCGroupMemberList() Private Confirmation Event
Private Data Parameters

eventType ML_GETDGC_GROUP_MEMBER_LIST_CONF
privEventCrossRefID a unique ID that associates subsequent

CSTAPrivateEvents with this request

mlGetDGCGroupMemberList()

Programmer’s Guide Issue 2.2 11-15

Private Event Parameters

Following the receipt of the CSTAEscapeServiceConfEvent, the application will
receive one or more CSTAPrivateEvents containing MERLIN MAGIX private
data.

Table 11-13. mlGetDGCGroupMemberList() CSTAPrivateEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTAEVENTREPORT

eventType CSTA_PRIVATE

privateData private data buffer containing an
ML_GETDGC_GROUP_MEMBER_LIST_RESP event

Table 11-14. mlGetDGCGroupMemberList() CSTAPrivateEvent Private Data
Parameters

eventType ML_GETDGC_GROUP_MEMBER_LIST_RESP
privEventCrossRefID a unique ID that associates this CSTAPrivateEvent

with the service request

list a list structure containing the following information:
a count (0-10) of how many Calling Group members
are in this response, and an array (agentID[])
containing up to 10 Calling Group members. A count
of 0 indicates that this is the last CSTAPrivateEvent
for the service request.

Escape Services

11-16 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to a mlGetDGCGroupMemberList() request, the CSTAUniversalFailure-
ConfEvent will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - dgcID is not a valid Calling Group
number.

INVALID_OBJECT_TYPE - dgcID is not a local Calling Group number (i.e., the
Calling Group contains a networked member).

INVALID_FEATURE - The application requested the escape service on a stream
opened with private data version 1 stream, or on a stream opened without
private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
mlGetDGCGroupMemberList() exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlGetDGCGroupMemberList (MLPrivateData_t *privateData,
 DeviceID_t *dgcID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData); /* INPUT */

mlGetDGCGroupMemberList()

Programmer’s Guide Issue 2.2 11-17

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLGetDGCGroupMemberListConfEvent_t getDGCGroupMemberList;
 } u;
} MLEvent_t;

typedef struct MLGetDGCGroupMemberListConfEvent_t
{
 MLPrivEventCrossRefID_t privEventCrossRefID;
} MLGetDGCGroupMemberListConfEvent_t;

Escape Services

11-18 Issue 2.2 Programmer’s Guide

Private Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAEventReport cstaEventReport;
 } event;
} CSTAEvent_t;

typedef struct
{
 union
 {
 CSTAPrivateEvent_t privateEvent;
 } u;
} CSTAEventReport;

typedef struct CSTAPrivateEvent_t
{
 Nulltype null;
} {
 MLEventType_t eventType;
 union
 {
 MLGetDGCGroupMemberListResp_t MLGetDGCGroupMemberListResp;
 } u;
} MLEvent_t;

typedef struct MLGetDGCGroupMemberListResp_t
{
 MLPrivEventCrossRefID_t privEventCrossRefID;
 struct
 {
 short count;
 DeviceID_t agentID[10];
 } list;
} MLGetDGCGroupMemberListResp_t;

mlGetDGCGroupMemberList()

Programmer’s Guide Issue 2.2 11-19

Important Feature Interactions

Group Calling (DGC)
The administered parameters for a local Calling Group have no affect on the
success or failure of the mlGetDGCGroupMemberList() escape service
request. If there are no local members in the Calling Group, the service request
will be successful, but will indicate that the Calling Group contains zero members.

Networking
If an application requests the mlGetDGCGroupMemberList() escape service
for a Calling Group containing a non-local member, the service request is denied.

Renumbering
If Calling Group members are renumbered on the switch, a subsequent
mlGetDGCGroupMemberList() escape service request will return the new
extension numbers for the Calling Group members.

Escape Services

11-20 Issue 2.2 Programmer’s Guide

mlGetDGCGroupTrunkList()

The mlGetDGCGroupTrunkList() escape service is introduced in MERLIN
MAGIX Release 2.0 with private data version 2. The service allows an
application to obtain a list of the lines and trunks assigned to a specific local
Calling Group.

Because the volume of data requested by this service may be large, the actual list
of lines and trunks is not returned in the confirmation event. The confirmation
event provides a unique private event cross reference ID that associates
subsequent CSTAPrivateEvents (containing the actual list of lines and trunks
assigned to the Calling Group) with the original request. The private event cross
reference ID is the only data returned in the confirmation event.

After returning the confirmation event, the service returns a sequence of
CSTAPrivateEvents. Each CSTAPrivateEvent contains the private event cross
reference ID, and a list. The list contains the number of elements in the message,
and up to 10 trunk identifiers.

The service provides the private event cross reference ID in case an application
has issued multiple mlGetDGCGroupTrunkList() requests. The final
CSTAPrivateEvent specifies that it contains zero trunk identifiers and serves to
inform the application that no more messages will be sent in response to this
query.

mlGetDGCGroupTrunkList()

Programmer’s Guide Issue 2.2 11-21

Service Request Parameters

Table 11-15. cstaEscapeService() Parameters for
mlGetDGCGroupTrunkList()

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

privateData private data buffer initialized by calling
mlGetDGCGroupTrunkList()

Private Service Request Parameters

Table 11-16. mlGetDGCGroupTrunkList() Private Service Request
Parameters

dgcID Calling Group number of the group being queried

Return Values

Table 11-17. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Escape Services

11-22 Issue 2.2 Programmer’s Guide

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-18. CSTAEscapeServiceConfEvent Parameters for
mlGetDGCGroupTrunkList()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_GETDGC_GROUP_TRUNK_LIST_CONF event

Confirmation Event Private Data

Table 11-19. mlGetDGCGroupTrunkList() Confirmation Event Private Data
Parameters

eventType ML_GETDGC_GROUP_TRUNK_LIST_CONF
privEventCrossRefID a unique ID that associates subsequent

CSTAPrivateEvents with this request

mlGetDGCGroupTrunkList()

Programmer’s Guide Issue 2.2 11-23

Private Event Parameters

Following the receipt of the CSTAEscapeServiceConfEvent, the application will
receive one or more CSTAPrivateEvents containing MERLIN MAGIX private
data.

Table 11-20. mlGetDGCGroupTrunkList() CSTAPrivateEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTAEVENTREPORT

eventType CSTA_PRIVATE

privateData private data buffer containing an
ML_GETDGC_GROUP_TRUNK_LIST_RESP event

Private Event Private Data

Table 11-21. mlGetDGCGroupTrunkList() CSTAPrivateEvent Private Data
Parameters

eventType ML_GETDGC_GROUP_TRUNK_LIST_RESP

privEventCrossRefID a unique ID that associates this CSTAPrivateEvent
with the service request

list a list structure containing the following information:
a count (0-10) of how many trunk identifiers are in
this response, and an array (trunkID[]) containing up
to 10 trunk identifiers. A count of 0 indicates that this
is the last CSTAPrivateEvent for the service request.

Escape Services

11-24 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to a mlGetDGCGroupTrunkList() request, the CSTAUniversalFailure-
ConfEvent will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - dgcID is not a valid Calling Group
number.

INVALID_OBJECT_TYPE - dgcID is not a local Calling Group number (i.e., the
Calling Group contains a networked member).

INVALID_FEATURE - The application requested the escape service on a stream
opened with private data version 1 stream, or on a stream opened without
private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
mlGetDGCGroupTrunkList() exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlGetDGCGroupTrunkList(MLPrivateData_t *privateData,
 DeviceID_t *dgcID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData) /* INPUT */;

mlGetDGCGroupTrunkList()

Programmer’s Guide Issue 2.2 11-25

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLGetDGCGroupTrunkListConfEvent_t getDGCGroupTrunkList;
 } u;
} MLEvent_t;

typedef struct MLGetDGCGroupTrunkListConfEvent_t
{
 MLPrivEventCrossRefID_t privEventCrossRefID;
} MLGetDGCGroupTrunkListConfEvent_t;

Escape Services

11-26 Issue 2.2 Programmer’s Guide

Private Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAEventReport cstaEventReport;
 } event;
} CSTAEvent_t;

typedef struct
{
 union
 {
 CSTAPrivateEvent_t privateEvent;
 } u;
} CSTAEventReport;

typedef struct CSTAPrivateEvent_t
{
 Nulltype null;
} CSTAPrivateEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLGetDGCGroupTrunkListResp_t MLGetDGCGroupTrunkListResp;
 } u;
} MLEvent_t;

typedef struct MLGetDGCGroupTrunkListResp_t
{
 MLPrivEventCrossRefID_t privEventCrossRefID;
 struct
 {
 short count;
 DeviceID_t trunkID[10];
 } list;
} MLGetDGCGroupTrunkListResp_t;

mlGetDGCGroupTrunkList()

Programmer’s Guide Issue 2.2 11-27

Important Feature Interactions

Networking
If an application requests the mlGetDGCGroupTrunkList() escape service for
a Calling Group containing a non-local member, the service request will be
denied with error INVALID_OBJECT_TYPE.

Pools
If a pool is administered to ring into the Calling Group, the list of trunk identifiers
returned by the mlGetDGCGroupTrunkList() escape service will return contain
the individual lines assigned to the pool, not the pool code.

Renumbering
If lines assigned to the Calling Group are renumbered on the switch, a
subsequent mlGetDGCGroupTrunkList() escape service request will return the
new trunk identifiers.

Escape Services

11-28 Issue 2.2 Programmer’s Guide

mlQueryDGCGroupDAUInfo()

The mlQueryDGCGroupDAUInfo() escape service is introduced in MERLIN
MAGIX 2.1 with private data version 3. This service allows an application to
obtain details on how a DGC Group is configured based on its programmable
parameters pertaining to Delayed Announcement Units (DAUs). Other DGC
Group information is provided by other services.

Service Request Parameters

Table 11-22. cstaEscapeService() Parameters for
mlQueryDGCGroupDAUInfo()

acsHandle ACS stream on which service request being made

invokeID identifies this service request within the stream

privateData private data buffer initialized with
mlQueryDGCGroupDAUInfo()

Private Service Request Parameters

Table 11-23. mlQueryDGCGroupDAUInfo() Private Service Request
Parameters

dgcID Calling Group number of the group being queried

Return Values

Table 11-24. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

mlQueryDGCGroupDAUInfo()

Programmer’s Guide Issue 2.2 11-29

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-25. CSTAEscapeServiceConfEvent Parameters for
mlQueryDGCGroupDAUInfo()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_QUERYDGC_GROUPDAU_INFO_CONF event

Confirmation Event Private Data

Table 11-26. mlQueryDGCGroupDAUInfo() Confirmation Event Private Data
Parameters

eventType ML_QUERYDGC_GROUPDAU_INFO_CONF
primaryDAUList a list of structure containing the following

information: a count (0-10) of how many
primary DAUs are in the list, and an array
(primaryDAU[]) containing up to 10 primary
DAU extension numbers.

secondaryDAU extension number of secondary DAU

primaryAnnList a list of structure containing the following
information: a count (0-10) of how many
primary announcement numbers are in the list,
and an array (primaryAnn[]) containing up to
10 announcement numbers.

secondaryAnn secondary announcement number

Escape Services

11-30 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to a mlQueryDGCGroupDAUInfo () request, the CSTAUniversalFailure-
ConfEvent will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - dgcID is not a valid Calling Group
number.

INVALID_OBJECT_TYPE - dgcID is not a local Calling Group number (i.e., the
Calling Group contains a networked member).

INVALID_FEATURE - The application requested the escape service on a stream
opened with a private data version less than version 3, or on a stream
opened without private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
mlQueryDGCGroupDAUInfo () request exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlQueryDGCGroupParameters (MLPrivateData_t *privateData,
 DeviceID_t *dgcID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData) /* INPUT */;

mlQueryDGCGroupDAUInfo()

Programmer’s Guide Issue 2.2 11-31

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLQueryDGCGroupDAUInfoConfEvent_t queryDGCGroupDAUInfo;
 } u;
} MLEvent_t;

Escape Services

11-32 Issue 2.2 Programmer’s Guide

typedef struct MLQueryDGCGroupDAUInfoConfEvent_t
{
 struct
 {
 short count;
 DeviceID_t primaryDAU[10];
 } primaryDAUList;
 DeviceID_t secondaryDAU;
 struct
 {
 short count;
 DeviceID_t primaryAnn[10];
 } primaryAnnList;
 short secondaryAnn;
} MLQueryDGCGroupDAUInfoConfEvent_t;

Important Feature Interactions

Networking
If an application requests the mlQueryDGCGroupParameters() escape service
for a Calling Group containing a non-local member, the service request is denied.

mlQueryDGCGroupParameters()

Programmer’s Guide Issue 2.2 11-33

mlQueryDGCGroupParameters()

The mlQueryDGCGroupParameters() escape service is introduced in MERLIN
MAGIX Release 2.1 with private data version 3. The service allows an
application to obtain the administered configuration parameters for a local DGC
Group. It does not provide any information about administered members, trunks,
or Delayed Announcement Units (DAUs); this information is available through
other escape services.

The service is valid for any local Calling Group on the local system. The service
will be denied for a group that has a non-local member.

Service Request Parameters

Table 11-27. cstaEscapeService() Parameters for
mlQueryDGCGroupParameters ()

acsHandle ACS stream on which service request being made

invokeID identifies this service request within the stream

privateData private data buffer initialized with
mlQueryDGCGroupParameters()

Private Service Request Parameters

Table 11-28. mlQueryDGCGroupParameters() Private Service Request
Parameters

dgcID Calling Group number of the group being queried

Return Values

Table 11-29. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Escape Services

11-34 Issue 2.2 Programmer’s Guide

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-30. CSTAEscapeServiceConfEvent Parameters for
mlQueryDGCGroupParameters()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_QUERYDGC_GROUP_PARAMETERS_CONF event

mlQueryDGCGroupParameters()

Programmer’s Guide Issue 2.2 11-35

Confirmation Event Private Data

Table 11-31. mlQueryDGCGroupParameters() Confirmation Event Private
Data Parameters

eventType ML_QUERYDGC_GROUP_PARAMETERS_CONF
groupType group type:

Auto Login – ML_GT_AUTO_IN
Auto Logout – ML_GT_AUTO_OUT
Integrated VMI – ML_GT_INTEG_VMI
Generic VMI – ML_GT_GENERIC_VMI

huntType hunt type:

Circular – ML_HT_CIRCULAR
Linear – ML_HT_LINEAR
Most Idle – ML_HT_MOST_IDLE_AGENT

msgWaitingExt extension number where messages are left for
the DGC group

externalAlertExt external alert station assigned to the group

supportGroup DGC Group ID of the support group assigned
to the specified group

overflowDest DGC Group ID or QCC LDN of the overflow
destination assigned for the specified group

priority a number (1-32) indicating the priority level of
calls being routed to DGC overflow groups

queueControlLimit number of calls allowed in the DGC group’s
queue

alarmThreshold1 first of three Calls-in-Queue alarm thresholds
at which alarms are displayed at supervisor
stations monitoring DGC group

alarmThreshold2 second of three Calls-in-Queue alarm
thresholds at which alarms are displayed at
supervisor stations monitoring DGC group

alarmThreshold3 third of three Calls-in-Queue alarm thresholds
at which alarms are displayed at supervisor
stations monitoring DGC group

groupCoverage flag (TRUE or FALSE) indicating whether the
DGC group is a receiver for at least one
coverage group

Escape Services

11-36 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to an mlQueryDGCGroupParameters() request, the CSTAUniversalFailure-
ConfEvent will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - dgcID is not a valid Calling Group
number.

INVALID_OBJECT_TYPE - dgcID is not a local Calling Group number (i.e., the
Calling Group contains a networked member).

INVALID_FEATURE - The application requested the escape service on a stream
opened with a private data version less than version 3, or on a stream
opened without private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
mlQueryDGCGroupParameters() request exceeds the maximum number
of outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlQueryDGCGroupParameters (MLPrivateData_t *privateData,
 DeviceID_t *dgcID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData) /* INPUT */;

mlQueryDGCGroupParameters()

Programmer’s Guide Issue 2.2 11-37

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLQueryDGCGroupParametersConfEvent_t
 queryDGCGroupParameters;
 } u;
} MLEvent_t;

typedef enum MLDGCGroupType_t
{
 ML_GT_UNKNOWN = 0,
 ML_GT_AUTO_OUT = 1,
 ML_GT_AUTO_IN = 2,
 ML_GT_INTEG_VMI = 3,
 ML_GT_GENERIC_VMI = 4
} MLDGCGroupType_t;

Escape Services

11-38 Issue 2.2 Programmer’s Guide

typedef enum MLDGCHuntType_t
{
 ML_HT_UNKNOWN = 0,
 ML_HT_CIRCULAR = 1,
 ML_HT_LINEAR = 2,
 ML_HT_MOST_IDLE_AGENT = 3,
} MLDGCHuntType_t;

typedef struct MLQueryDGCGroupParametersConfEvent_t
{
 MLDGCGroupType_t groupType;
 MLDGCHuntType_t huntType;
 DeviceID_t msgWaitingExt;
 DeviceID_t externalAlertExt;
 DeviceID_t supportGroup;
 DeviceID_t overflowDest;
 short priority;
 short queueControlLimit;
 short alarmThreshold1;
 short alarmThreshold2;
 short alarmThreshold3;
 Boolean groupCoverage;
} MLQueryDGCGroupParametersConfEvent_t;

Important Feature Interactions

Networking
If an application requests the mlQueryDGCGroupParameters() escape service
for a Calling Group containing a non-local member, the service request is denied.

mlQueryDGCQueueStatus()

Programmer’s Guide Issue 2.2 11-39

mlQueryDGCQueueStatus()

The mlQueryDGCQueueStatus() service is introduced in MERLIN MAGIX
Release 2.0 with private data version 2. The service returns the number of calls
in a DGC queue. The service is valid for any local Calling Group. This service is
denied for a Calling Group that has non-local members in it.

Service Request Parameters

Table 11-32. cstaEscapeService() Parameters for mlQueryDGCQueueStatus()

acsHandle ACS stream on which service request being made

invokeID identifies this service request within the stream

privateData private data buffer initialized with
mlQueryDGCQueueStatus()

Private Service Request Parameters

Table 11-33. mlQueryDGCQueueStatus() Private Service Request Parameters

dgcID Calling Group number of the group being queried

Return Values

Table 11-34. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Escape Services

11-40 Issue 2.2 Programmer’s Guide

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-35. CSTAEscapeServiceConfEvent Parameters for
mlQueryDGCQueueStatus()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_QUERYDGC_QUEUE_STATUS_CONF event

Confirmation Event Private Data

Table 11-36. mlQueryDGCQueueStatus() Confirmation Event Private Data
Parameters

eventType ML_QUERYDGC_QUEUE_STATUS_CONF
callsInQueue number of calls in the DGC queue

mlQueryDGCQueueStatus()

Programmer’s Guide Issue 2.2 11-41

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to an mlQueryDGCQueueStatus() request, the CSTAUniversalFailure-
ConfEvent will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - dgcID is not a valid Calling Group
number.

INVALID_OBJECT_TYPE - dgcID is not a local Calling Group number (i.e., the
Calling Group contains a networked member).

INVALID_FEATURE - The application requested the escape service on a stream
opened with private data version 1 stream, or on a stream opened without
private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
mlQueryDGCQueueStatus() request exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlQueryDGCQueueStatus(MLPrivateData_t *privateData,
 DeviceID_t *dgcID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData) /* INPUT */;

Escape Services

11-42 Issue 2.2 Programmer’s Guide

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLQueryDGCQueueStatusConfEvent_t queryDGCQueueStatus;
 } u;
} MLEvent_t;

typedef struct MLQueryDGCQueueStatusConfEvent_t
{
 short callsInQueue;
} MLQueryDGCQueueStatusConfEvent_t;

mlQueryDGCQueueStatus()

Programmer’s Guide Issue 2.2 11-43

Important Feature Interactions

Group Calling (DGC)
The mlQueryDGCQueueStatus() service request returns the number of calls in
the queue. If there are no calls in the Calling Group queue, the service request is
successful, but indicates that there are zero calls in the queue.

Networking
If an application requests the mlQueryDGCQueueStatus() escape service for a
Calling Group containing a non-local member, the service request is denied.

Escape Services

11-44 Issue 2.2 Programmer’s Guide

mlQueryDeviceName()

The mlQueryDeviceName() service is introduced in MERLIN MAGIX Release
2.0 with private data version 2. The service returns the switch administered label
for a Line, Trunk, Extension or Calling Group.

Service Request Parameters

Table 11-37. cstaEscapeService() Parameters for mlQueryDeviceName()

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

privateData private data buffer initialized by calling
mlQueryDeviceName()

Private Service Request Parameters

Table 11-38. mlQueryDeviceName() Private Service Request Parameters

device device (line, trunk, extension, or calling group) being
queried

Return Values

Table 11-39. cstaEscapeService() Return Values for mlQueryDeviceName()

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

mlQueryDeviceName()

Programmer’s Guide Issue 2.2 11-45

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch was able to
process the request.

Table 11-40. CSTAEscapeServiceConfEvent Parameters

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_QUERY_DEVICE_NAME_CONF event

Confirmation Event Private Data

The CSTAEscapeServiceConfEvent will contain MERLIN MAGIX private data.

Table 11-41. mlQueryDeviceName() Confirmation Event Private Data
Parameters

eventType ML_QUERY_DEVICE_NAME_CONF
deviceType device type:

ML_DT_TRUNK - Line/Trunk
ML_DT_STATION - Extension
ML_DT_DGC_QUEUE - DGC Queue

device device (from service request)

name[] a null-terminated string containing the
administered label for device

Escape Services

11-46 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to a mlQueryDeviceName() request, the CSTAUniversalFailureConfEvent
will contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED – An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE – The CTI link is disconnected or not in service.

INVALD_CSTA_DEVICE_IDENTIFIER – device is not a valid trunk identifier,
extension number or DGC Group identifier on the MERLIN MAGIX system.

INVALID_FEATURE – The application requested the escape service on a stream
opened with private data version 1 stream, or on a stream opened without
private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED – Processing the
mlQueryDeviceName() request exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION – The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION – A Telephony Server or MERLIN MAGIX
PBX driver resource limitation prevented the system from processing the
request.

Request Syntax

mlQueryDeviceName(MLPrivateData_t *privateData,
 DeviceID_t *deviceID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData) /* INPUT */;

mlQueryDeviceName()

Programmer’s Guide Issue 2.2 11-47

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLQueryDeviceNameConfEvent_t queryDeviceName;
 } u;
} MLEvent_t;

typedef enum MLDeviceType_t
{
 ML_DT_DGC_QUEUE = 1,
 ML_DT_STATION = 5,
 ML_DT_TRUNK = 6
} MLDeviceType_t;

typedef struct MLQueryDeviceNameConfEvent_t
{
 MLDeviceType_t deviceType;
 DeviceID_t device;
 char name[16];
} MLQueryDeviceNameConfEvent_t;

Escape Services

11-48 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Busy-Out
The board or port for device may be busied out without affecting the result of the
mlQueryDeviceName() service.

Demand Test
When the board for device is going through a demand test, the result of the
mlQueryDeviceName() service is not affected.

Direct Facility Termination (DFT)
The mlQueryDeviceName() service is allowed for trunks that appear on DFT's .
There is no effect on DFT’s when the mlQueryDeviceName() service is
requested.

Group Calling
The mlQueryDeviceName() service is available for any Calling Group in the
system.

Labels
The mlQueryDeviceName() service returns the administered label for device.
When no label is administered, the mlQueryDeviceName() service returns the
empty string ("").

Lines
The mlQueryDeviceName() service is allowed for any line. If the line has a call
on it, the success or failure of the mlQueryDeviceName() service is not
affected.

Maintenance Busy Mode
If device is a station or trunk, it may be in Maintenance Busy Mode without
affecting the result of the mlQueryDeviceName() service.

Normal/Responding Mode
If device is a station, the station does not have to be in Normal Responding Mode
for the mlQueryDeviceName() service to be successful.

Outgoing Calls
Outgoing calls are not affected by the mlQueryDeviceName() service.

Page Zones
If device is a Page Zone, the service is denied.

mlQueryDeviceName()

Programmer’s Guide Issue 2.2 11-49

Park Zones
If device is a Park Zone, the service is denied.

Pools
If device is a trunk in a pool, the request will still be granted. If the device is a
pool, the service is denied.

Provisioning
When a 800BRI board is undergoing a provisioning test, the label for a trunk on
the board can still be requested and received via the mlQueryDeviceName()
service.

Slot Reset/Busy-out
device may be on a board that is busied-out through a reset or busy-out
operation without affecting the result of the mlQueryDeviceName() service.

Station Modes
If device is a station, the station may be in any of the following modes without
affecting the result of the mlQueryDeviceName() service.

n Administration

n Maintenance

n Alarm Clock

n Directory/Directory Programming

n Feature

n Inspect

n Menu

n Program

n Test

Trunk Test
If device is a trunk, the trunk may be tested without affecting the result of the
mlQueryDeviceName() service.

UDP/Networking
Only local extensions, trunks and Calling Groups are valid for the
mlQueryDeviceName() service.

Escape Services

11-50 Issue 2.2 Programmer’s Guide

mlQueryTrunkStatus()

The mlQueryTrunkStatus() escape service is introduced in MERLIN MAGIX
Release 2.0 with private data version 2. The service returns the status of a line
or trunk. The service is supported for all trunk types, and is allowed whether or
not the trunk is assigned to a pool.

Table 11-42 lists the possible values for the trunk status.

Table 11-42. mlQueryTrunkStatus() Trunk Status Values

ML_TS_BUSY The trunk is in use by at least one user.
ML_TS_MAINT_BUSY The trunk is in Maintenance Busy Mode.
ML_TS_IDLE The trunk is not in use and is not in Maintenance

Busy Mode.

Service Request Parameters

Table 11-43. cstaEscapeService() Parameters for mlQueryTrunkStatus()

acsHandle ACS stream on which service request is being made

invokeID identifies this service request within the stream

privateData private data buffer initialized with
mlQueryTrunkStatus()

Private Service Request Parameters

Table 11-44. mlQueryTrunkStatus() Private Service Request Parameters

trunkID trunk identifier of the line or trunk being queried

mlQueryTrunkStatus()

Programmer’s Guide Issue 2.2 11-51

Return Values

Table 11-45. cstaEscapeService() Return Values

zero or positive value Success
ACSERR_BADHDL acsHandle is not a valid stream identifier
ACSERR_STREAM_FAILED acsHandle is not valid. The stream may have

been closed or aborted

Confirmation Event -
CSTAEscapeServiceConfEvent

The CSTAEscapeServiceConfEvent indicates that the switch has accepted the
request.

Table 11-46. CSTAEscapeServiceConfEvent Parameters for
mlQueryTrunkStatus()

acsHandle handle for stream (from service request)

eventClass CSTACONFIRMATION

eventType CSTA_ESCAPE_SVC_CONF

invokeID identifies service request within stream

privateData private data buffer containing an
ML_QUERY_TRUNK_STATUS_CONF event

Confirmation Event Private Data

Table 11-47. mlQueryTrunkStatus() Confirmation Event Private Data
Parameters

eventType ML_QUERY_TRUNK_STATUS_CONF

trunkStatus status of the line or trunk

Escape Services

11-52 Issue 2.2 Programmer’s Guide

CSTA Universal Failure Confirmation Event
Errors

When an application receives a CSTAUniversalFailureConfEvent in response
to a mlQueryTrunkStatus() request, the CSTAUniversalFailureConfEvent will
contain one of the following values in the error parameter:

GENERIC_UNSPECIFIED - An application will receive GENERIC_UNSPECIFIED
when the request could not be satisfied for a reason other than the more
specific reasons given below.

RESOURCE_OUT_OF_SERVICE - The CTI link is disconnected or not in service.

INVALID_CSTA_DEVICE_IDENTIFIER - trunkID is not a valid trunk identifier.

INVALID_FEATURE - The application requested the escape service on a stream
opened with private data version 1 stream, or on a stream opened without
private data.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED - Processing the
mlQueryTrunkStatus() request exceeds the maximum number of
outstanding requests permitted at either the driver or the switch.

REQUEST_TIMEOUT_REJECTION - The MERLIN MAGIX PBX driver sent the
request to the switch, but did not receive a response within the allotted time.
This is usually an indication that there is a problem with the CTI link.

RESOURCE_LIMITATION_REJECTION - A Telephony Server or MERLIN
MAGIX PBX driver resource limitation prevented the system from
processing the request.

Request Syntax

mlQueryTrunkStatus(MLPrivateData_t *privateData,
 DeviceID_t *trunkID);

typedef struct MLPrivateData_t
{
 char vendor[32];
 unsigned short length;
 char data[ML_MAX_PRIVATE_DATA];
} MLPrivateData_t;

cstaEscapeService (ACSHandle_t acsHandle, /* INPUT */
 InvokeID_t invokeID, /* INPUT */
 PrivateData_t *privateData) /* INPUT */;

mlQueryTrunkStatus()

Programmer’s Guide Issue 2.2 11-53

Confirmation Event Syntax

typedef struct
{
 ACSHandle_t acsHandle;
 EventClass_t eventClass;
 EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{
 ACSEventHeader_t eventHeader;
 union
 {
 CSTAConfirmationEvent cstaConfirmation;
 } event;
} CSTAEvent_t;

typedef struct
{
 InvokeID_t invokeID;
 union
 {
 CSTAEscapeServiceConfEvent_t escapeService;
 } u;
} CSTAConfirmationEvent;

typedef struct CSTAEscapeServiceConfEvent_t
{
 Nulltype null;
} CSTAEscapeServiceConfEvent_t;

typedef struct MLEvent_t
{
 MLEventType_t eventType;
 union
 {
 MLQueryTrunkStatusConfEvent_t queryTrunkStatus;
 } u;
} MLEvent_t;

typedef struct MLQueryTrunkStatusConfEvent_t
{
 short trunkStatus;
} MLQueryTrunkStatusConfEvent_t;

typedef enum MLTrunkStatus_t
{
 ML_TS_MAINT_BUSY = 1,
 ML_TS_BUSY = 2,
 ML_TS_IDLE = 3
} MLTrunkStatus_t;

Escape Services

11-54 Issue 2.2 Programmer’s Guide

Important Feature Interactions

Auto Maintenance
When the line or trunk being queried has been taken out of service because of
this feature, the mlQueryTrunkStatus() service returns a status of
ML_TS_MAINT_BUSY.

Busy-Out
When the line or trunk being queried is on a board that has been busied-out, the
mlQueryTrunkStatus() service returns a status of ML_TS_MAINT_BUSY.

Demand Test
When the line or trunk being queried is on a board that is going through a demand
test, the mlQueryTrunkStatus() service returns a status ML_TS_MAINT_BUSY
1.

Direct Facility Termination (DFT)
The mlQueryTrunkStatus() may be used for a line assigned to a DFT.

When the LED next to the DFT is off, the mlQueryTrunkStatus() service
returns a status of ML_TS_IDLE.

E911
When a line is administered as a E911 line, the mlQueryTrunkStatus() service
returns a status of ML_TS_IDLE.

Group Calling (DGC)
The line or trunk being queried may be administered to ring into a Calling Group,
either individually or as part of a pool.

Hold
When an outside call is on Hold (any type), the mlQueryTrunkStatus() service
returns a status of ML_TS_BUSY for the line or trunk associated with the call.

Incoming Calls
When an incoming call is ringing, the mlQueryTrunkStatus() service returns a
status of ML_TS_BUSY for the line or trunk associated with the call.

Lines/Trunks
The mlQueryTrunkStatus() service supports all trunk types.

1 A board that is going through a demand test will be busied-out.

mlQueryTrunkStatus()

Programmer’s Guide Issue 2.2 11-55

Loudspeaker Page
When a line is administered as Loudspeaker Page, the mlQueryTrunkStatus()
service returns a status of ML_TS_IDLE even if the Loudspeaker Page line is in
use by a call.

Music-On-Hold
When a line is administered as Music-On-Hold, the mlQueryTrunkStatus()
service returns a status of ML_TS_IDLE even if the Music-On-Hold line is in use
by a call.

Networking
The mlQueryTrunkStatus() service returns a status of ML_TS_BUSY for the line
associated with a Networked Call (whether incoming or outgoing).

This mlQueryTrunkStatus() service is only available for lines and trunks on the
local switch.

Outgoing Calls
When an outgoing call is made to the CO (or over the network), the
mlQueryTrunkStatus() service will return a status of ML_TS_BUSY for the line
or trunk associated with the call.

Phantom Board
When a line is administered on a phantom board, the mlQueryTrunkStatus()
service returns a status of ML_TS_IDLE.

Pools
The trunkID may be a line that is in a pool.

If the trunkID is a pool ID, the mlQueryTrunkStatus() service is denied.

Provisioning
When a 800BRI board is undergoing a provisioning test, the
mlQueryTrunkStatus() service returns a status of ML_TS_MAINT_BUSY for
lines and trunks on that board.

Ringing Options
The ringing options associated with a DFT have no effect on the result of the
mlQueryTrunkStatus() service.

Slot Reset/Busy-out
When a board is busied-out through a reset or busy-out operation, the
mlQueryTrunkStatus() service returns a status of ML_TS_MAINT_BUSY for any
of the lines or trunks on the board.

Escape Services

11-56 Issue 2.2 Programmer’s Guide

Slot Restore
When a board is restored through a Restore operation, the
mlQueryTrunkStatus() service returns a status of ML_TS_IDLE for any of the
lines or trunks on the board.

T1 and PRI lines
T1 and PRI lines may be used for voice or data on certain boards (e.g., 100R and
100DCD). When they are used for data, from the switch’s point of view, the lines
are unequipped and look idle even when there is data going across the line. For
any data line that fits this description, the mlQueryTrunkStatus() service
returns a status of ML_TS_IDLE unless the board is in any of the maintenance
states listed in this section.

Event Flows

Contents

Programmer’s Guide Issue 2.2 12-i

Service Invocation Event Flows 12-3
n cstaAnswerCall() 12-3
n cstaClearConnection() 12-4

cstaClearConnection() Drops Initiated Call 12-4
cstaClearConnection() Drops Extension from Two-Party
Call 12-6

cstaClearConnection() Drops Conference Originator from
Conference Call 12-7

cstaClearConnection() Drops Extension (Not Conference
Originator) from Conference Call 12-9

cstaClearConnection() Drops Extension (Not Conference
Originator) from Conference Call and Finding All Parties
Held, Clears Call 12-10

n cstaConferenceCall() 12-12
cstaConferenceCall() Creates Typical Three-Party
Conference 12-12

cstaConferenceCall() Conferences Held Conference Call
with Another Call 12-14

n cstaConsultationCall() 12-15
cstaConsultationCall() Makes Typical Consultation Call 12-15
cstaConsultationCall() When Party is Placed on Hold and
Then Drops During Consultation 12-17

cstaConsultationCall() When Consultation Causes All
Parties to be on Hold 12-19

n cstaDeflectCall() 12-20
cstaDeflectCall() for Call in Queue to Station – MERLIN
MAGIX Release 2.0 and Later 12-20

cstaDeflectCall() for Station to Calling Group Queue –
MERLIN MAGIX Release 2.0 and Later 12-23

cstaDeflectCall() for Station to Station – MERLIN MAGIX
Release 2.0 and Later 12-25

n cstaHoldCall() 12-27
cstaHoldCall() Places Call on Hold 12-27

Contents

12-ii Issue 2.2 Programmer’s Guide

cstaHoldCall() Causes Call Clearing When All Parties On
Hold 12-28

n cstaMakeCall() 12-29
cstaMakeCall to Local Extension 12-29
cstaMakeCall to External Number 12-30

n cstaRetrieveCall() 12-32
n cstaTransferCall() 12-33

Typical cstaTransferCall() 12-33
Basic Extension Calling Event Flows 12-34
n User Manually Calls Local Extension 12-34
n cstaMakeCall() to Local Extension 12-36
n cstaMakeCall() Completes Partial Dialing 12-38
n cstaMakeCall() to External Number 12-40
n cstaMakeCall() to Invalid or Busy Number 12-42
n Internal Call to DGC Group Arrives at Extension 12-44
Incoming Trunk-to-Extension Calling 12-47
n Trunk Call Arrives at Extension 12-47
n Trunk Call Arrives Through DGC Group 12-49
n Trunk Call to DGC Group Overflows to DGC Group Then

Arrives at Extension 12-52
n Trunk Call Arrives Through Voice Prompting Unit, QCC,

Voice Mail, or Unmonitored DLC 12-55
Consultation Event Flows 12-57
n Supervised Consultation of Incoming Trunk Call 12-57
n Unsupervised Consultation of Incoming Trunk Call 12-63
n Supervised Consultation of Internal Call 12-69
n Unsupervised Consultation of Internal Call 12-75
n Consultation with Consulted Device Busy (No SA) 12-82
Conference Event Flows 12-88
n Unsupervised Conference of Local Extension to Local

Extension 12-89
n Supervised Conference of Local Extension to Local

Extension 12-92
n Unsupervised Conference of Incoming Trunk Call 12-94
n Supervised Conference of Incoming Trunk Call 12-98
Transfer Event Flows 12-100
n Unsupervised Transfer of Local Extension to Local Extension 12-100
n Supervised Transfer of Local Extension to Local Extension 12-104
n Unsupervised Transfer of Incoming Trunk Call 12-107
n Unsupervised Transfer of Outgoing Trunk Call 12-111
n Supervised Transfer of Incoming Trunk Call 12-115

Contents

Programmer’s Guide Issue 2.2 12-iii

n Transfer Return with Answer 12-118
n Call is Answered with Voice Announce on Speaker;

cstaTransferCall() Follows 12-121
n Trunk-to-Trunk Transfer 12-125
n Transfer into DGC Group with No Members Available;

Member Becomes Available 12-128
Feature Invocation Event Flows 12-131
n Account Code Entry/Forced Account Code Entry

(ACE/FACE) 12-131
n Barge-In 12-133

Barge-In to Busy Extension 12-133
Barge-In Overrides Do Not Disturb at Extension 12-135

n Call Forward/Follow Me 12-137
Forwarding Extension Answers (Forward to Internal
Number Only) 12-137

Forward-to Extension Answers 12-140
Delayed Call Forwarding - Forwarding Extension Answers
(Forward to Internal Number Only) 12-143

Call Forward on Busy 12-145
Remote Call Forwarding with Delay 12-148
Remote Call Forwarding Without Delay 12-150

n Call Screening 12-151
n Call Waiting 12-153
n Callback Queuing (CBQ) 12-155

Callback - User Stays On Line 12-155
Callback - Caller Goes On Hook on Callback Call 12-157
Callback Queuing for Pool or ARS; Caller Waits Off-Hook 12-159
Callback Queuing for Pool or ARS; Caller Goes On Hook 12-160

n Camp On 12-162
Camp On Completes Transfer to Busy Extension;
Destination Comes Available and Answers 12-162

Camp On Completes Transfer to Non-Busy Extension;
Destination Answers 12-167

Camp On Return with Answer 12-171
n Coverage 12-174

Coverage; Receiver Answers 12-174
Coverage; Calling Group is Receiver 12-177
Coverage; Sender Answers 12-180
Direct Voice Mail – Transfer and Dial Feature Code 12-183
Direct Voice Mail – Use Feature or Programmed Button 12-187

n Park 12-191
Parking a Call 12-191
Reconnecting to Parked Call Before Timer Expires 12-192

Contents

12-iv Issue 2.2 Programmer’s Guide

Parked Call Returns 12-193
n Pickup 12-194

Pickup Parked, Alerting, or Held Internal Call 12-194
Pickup Parked, Alerting, or Held External Call 12-197

n Service Observing (MERLIN MAGIX Release 2.0 and Later) 12-200
Observer Starts Observing Before Call 12-200
Observer Starts Observing After Call Exists 12-202

Shared System Access Event Flows 12-203
n SSA Button Answers Alerting Call; Call Activity Follows on

SA and SSA 12-204
n SSA Button Bridges onto Call at SA Button; Call Activity

Follows on SA and SSA 12-211
n Call Activity on an SA button Where There is an Associated

SSA Button at Another Extension (that has Not Answered or
Bridged) 12-213

Direct Facility Termination Event Flows 12-215
n Incoming Call on DFT; Call Activity Follows 12-215
n DFT Bridges onto Call at SA; Call Activity Follows 12-217

Event Flows

Programmer’s Guide Issue 2.2 12-1

This chapter describes various MERLIN LEGEND and MERLIN MAGIX CTI event
flows. The flows are organized into the following subsections:

n Service Invocation Event Flows — These flows illustrate the events that
flow in response to various service invocations. The service invocation
event flows usually occur within a broader context, and they are important
building blocks.

n Basic Call Event Flows — These flows illustrate basic extension calling
scenarios to and from internal and external destinations.

n Incoming Trunk Event Flows — These flows illustrate incoming trunk calls
arriving at a monitored extension. These flows include flows for incoming
trunk calls that arrive through Voice Prompting Unit, DGC Group, QCC,
and unmonitored DLC1.

n Consultation Scenarios — These flows illustrate the use of the consultation
service (including private data) to extend a call to another user. The
receiving user’s application may use information about the original caller to
pop a screen. Private data lets an application monitoring the receiving
extension pop a screen using the original caller’s information as soon as
the consultation call begins to alert.

n Conference Scenarios — These flows illustrate the use of the conference
service.

n Transfer Scenarios — These flows illustrate the use of the transfer service.

n Feature Invocation Scenarios — These flows illustrate the interaction of
MERLIN LEGEND and MERLIN MAGIX switch features with TSAPI
services and events.

n Shared System Access Scenarios — These flows illustrate the interaction
of Shared System Access and similar button types with TSAPI services
and events. The beginning of this section describes the MERLIN LEGEND
and MERLIN MAGIX switch rules for dealing with such facilities in the
context of the TSAPI model.

1 A monitored DLC behaves like any other monitored extension. See Chapter 8 for a discussion of

DLC interactions.

Event Flows

12-2 Issue 2.2 Programmer’s Guide

Note that headset operation is not involved in these scenarios.

Throughout this chapter, diagrams show the devices, connections, and calls
before, during, and after event scenarios. In the diagrams, squares are devices
and are labeled D1, D2, etc. (as well as having illustrative extension numbers)
Circles are calls and are labeled C1, C2, etc. Lines are connections and their
label identifies the device and the call (for example D1C2 would be the
connection of device D1 to call C2). Table 12-1 shows the symbols used to label
connections with their connection state.

Table 12-1. Symbols Used in Call Control Service Scenario Figures

Symbol Connection State
i Initiated (the extension is hearing dial tone, is in the process

of dialing, or has completed dialing but the call has not yet
originated)

a Alerting (often audible ringing, but not necessarily)

c Connected

h Held

ht, hc Held for Transfer, Held for Conference - These are used
when necessary to distinguish these states from Held.

q Queued

* Any non-null state

assoc Always shown with a dotted line, “assoc” indicates that a
call appears at the device in a MERLIN LEGEND or
MERLIN MAGIX switch associative state.

bridged Shown with a dotted line, “bridged” indicates that the device
has used an SSA button to bridge onto a call.

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-3

Service Invocation Event Flows

The event flows in this section show service invocations, service confirmations
and call events that flow as a result of service invocations. These flows will
typically occur in a stream where other service requests occur and where other
call event reporting will occur.

cstaAnswerCall()

Extension 12 has placed a call to Extension 11 that is now alerting.

Before After

D1
x11

D2
x12

C1
a c

D2C1 is listening to ringback

D1
x11

D2
x12

C1
c c

D1C1 and D2C1 are talking

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 12 has called Extension 11,
where the call is now alerting.

cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 12 has called Extension 11,
where the call is now alerting.

cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Event Flows

12-4 Issue 2.2 Programmer’s Guide

cstaClearConnection()

The cstaClearConnection() scenarios below show event flows that result in
different situations:

n clearing a connection for an initiated call (the call is not connected at the far
end);

n clearing a connection for a two-party call;

n clearing the connection for a conference call at the conference originator;

n clearing an extension other than the conference originator from a conference
call (at least one remaining party is connected to the conference call);

n clearing an extension other than the conference originator from a conference
call and, finding that all remaining parties have the call held, clearing the call.

cstaClearConnection() Drops Initiated Call

Extension 11 is placing a call to Extension 12. An application requests
cstaClearConnection() before that call is delivered to Extension 12. This
includes the cases where:

n Extension 11 is hearing dial tone.

n Extension 11 is in the middle of manual dialing.

n Extension 11 is hearing busy tone (the call is not delivered to Extension 12).

Before After

D1
x11

D2
x12

C1
i

D1
x11

D2
x12

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 is in the midst of dialing
a call to Extension 12 or is hearing
dial tone.

cstaClearConnection()
 call = D1C1

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-5

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 is in the midst of dialing
a call to Extension 12 or is hearing
dial tone.

cstaClearConnection()
 call = D1C1

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

If Extension 11 was off-hook on the
speakerphone (and not the handset),
Extension 11 is now on-hook and idle

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Event Flows

12-6 Issue 2.2 Programmer’s Guide

cstaClearConnection() Drops Extension from
Two-Party Call

Extension 11 is connected to a call that has been delivered to Extension 12. The
call may be connected or held at Extension 12. An application requests
cstaClearConnection() for Extension 11’s connection to that call.

Before After

D1
x11

D2
x12

C1
c a,c, h

D1
x11

D2
x12

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 is connected to a call
that is alerting, connected, or held at
Extension 12.

cstaClearConnection()
 call = D1C1

 CSTAClearConnectionConfEvent
Event confirms that the connection
has cleared from Extension 11.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Since this is a two-party call, the
connection at Extension 12 also
clears.

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 is connected to a call
that is alerting, connected, or held at
Extension 12.

cstaClearConnection()
 call = D1C1

 CSTAClearConnectionConfEvent
Event confirms that the connection
has cleared from Extension 11.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Since this is a two-party call, the
connection at Extension 12 also
clears.

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

If Extension 11 was off-hook on the
speakerphone (and not the handset),
Extension 11 is now on-hook and idle

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-7

cstaClearConnection() Drops Conference
Originator from Conference Call

Extension 11 is the conference originator for conference call C1. When the
conference originator drops from a conference call, the switch tears down that
conference call.

Before After

D1
x11

D2
x12

C1
c *

D3
x21

*

D1 is conference originator

D1
x11

D2
x12

D3
x21

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Application drops Conference
originator from conference call.
cstaClearConnection()
 call = D1C1

CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

When the conference originator drops
from a conference call, the switch
tears down the call, so events show
other parties being dropped as well.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause= EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When the conference originator drops
from a conference call, the switch
tears down the call, so events show
other parties being dropped as well.

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

 NOTE:
The ordering of the events showing the call clearing from Extensions 12
and 21 depends on the order in which the MERLIN LEGEND or MERLIN
MAGIX switch clears the connections. In this example, the switch cleared
the connection at Extension 12 first. Thus, the monitors on Extensions 12
and 21 see the connection at Extension 12 clear. Then, the connection at
Extension 21 clears with the monitor on Extension 21 receiving that event.

Event Flows

12-8 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Application drops Conference
originator from conference call.
cstaClearConnection()
 call = D1C1

CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

When the conference originator drops
from a conference call, the switch
tears down the call, so events show
other parties being dropped as well.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause= EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When the conference originator drops
from a conference call, the switch
tears down the call, so events show
other parties being dropped as well.

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

If Extension 11 was off-hook on the
speakerphone (and not the handset),
Extension 11 is now on-hook and idle
CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-9

cstaClearConnection() Drops Extension (Not
Conference Originator) from Conference Call

Extension 11 is not the conference originator, and either Extension 12 or
Extension 21 (or both) must be connected to the call. If both Extension 12 and
Extension 21 have the call on hold, then the call is torn down (the following
scenario shows this event flow).

Before After

D1
x11

D2
x12

C1
c *

D3
x21

*

D1
x11

D2
x12

C1
c *

D3
x21

*

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12 or

21
Application clears conference call
connection from Extension 11 (not
conference originator).

cstaClearConnection()
 call = D1C1

 CSTAClearConnectionConfEvent
Event confirms that the connection
has cleared from the extension set.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12 or

21
Application clears conference call
connection from Extension 11 (not
conference originator).

cstaClearConnection()
 call = D1C1

 CSTAClearConnectionConfEvent
Event confirms that the connection
has cleared from the extension set.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

If Extension 11 was off-hook on the
speakerphone (and not the handset),
Extension 11 is now on-hook and idle

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Event Flows

12-10 Issue 2.2 Programmer’s Guide

cstaClearConnection() Drops Extension (Not
Conference Originator) from Conference Call
and Finding All Parties Held, Clears Call

Extension 11 is not the conference originator, and both Extension 12 and
Extension 21 have held the conference call. When an application clears the
conference call connection at Extension 11, the resulting call has all parties on
hold, so it is torn down.

Before After

D1
x11

D2
x12

C1
c h

D3
x21

h

D1
x11

D2
x12

c

D3
x21

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Application clears conference call
connection from Extension 11 (not
conference originator)
cstaClearConnection()
 call = D1C1

CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

When all parties remaining on a call
have the call on hold, the switch tears
down the call.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When all parties remaining on a call
have the call on hold, the switch tears
down the call.

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

 NOTE:
The ordering of the events showing the call clearing from Extensions 12
and 21 depends on the order in which the MERLIN LEGEND or MERLIN
MAGIX switch clears the connections. In this example, the switch cleared
the connection at Extension 12 first.

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-11

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Application clears conference call
connection from Extension 11 (not
conference originator)
cstaClearConnection()
 call = D1C1

CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

When all parties remaining on a call
have the call on hold, the switch tears
down the call.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When all parties remaining on a call
have the call on hold, the switch tears
down the call.

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

If Extension 11 was off-hook on the
speakerphone (and not the handset),
Extension 11 is now on-hook and idle

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Event Flows

12-12 Issue 2.2 Programmer’s Guide

cstaConferenceCall()

An application typically uses cstaConsultationCall() prior to requesting
cstaConferenceCall(). In addition, there are certain combinations of manual
operations that are acceptable prerequisites. Refer to the cstaConferenceCall()
manual page in Chapter 4 for information on the manual operations.

The cstaConferenceCall() scenarios below show event flows that result in
different situations:

n creating a typical three-party conference call;

n conferencing a held conference call with a two-party call.

The scenario diagrams and flows show a resulting conference call. In a MERLIN
LEGEND or MERLIN MAGIX switch environment, the call ID of the resulting call
will always be the same as one of the call IDs for one of the calls that was
merged into the conference call. However, other switches may allocate a new
identifier for the conference call, so switch independent applications should never
depend on this MERLIN LEGEND/MERLIN MAGIX switch behavior.

cstaConferenceCall() Creates Typical Three-
Party Conference

Call activity at Extension 11 (or application activity on behalf of Extension 11) has
the connections at Extension 11 in the required states for an application to make
a successful cstaConferenceCall() request. A variety of scenarios may have
brought the connections to this state, including:

n Establishing a call between Extension 11 and Extension 12 (either
application or manual action) and the application issuing
cstaConsultationCall() and making a consultation call to Extension 21.

n Establishing a call between Extension 11 and Extension 12 (either
application or manual action) and the user at Extension 11 pressing the
CONFERENCE button, and making a call to Extension 21.

Before After

c

D1
x11

D2
x12

C1
hc, ht c

D3
x21

a,c,hC2

c

D1
x11

D2
x12

c

D3
x21

a,c,hC2

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-13

Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12, 21
Application conferences consultation
call C2 with held call C1 at Extension
11.

cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

 CSTAConferenceCallConfEvent
 newCall = D1C2

 CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections
 device after
 11 D1C2
 12 D2C2
 21 D3C2

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections
 device after
 11 D1C2
 12 D2C2
 21 D3C2

Event Flows

12-14 Issue 2.2 Programmer’s Guide

cstaConferenceCall() Conferences Held
Conference Call with Another Call

Extension 11 has a conference call C1 on hold-for-transfer or hold-for-conference
and a connection to call C2, which may be alerting, connected or held at
Extension 21. The conference operation will join these two calls.

The notation <*> indicates that the device identifier contains:

n ANI/ICLID if the connection was an incoming call that arrived on a trunk
providing ANI or ICLID

n Dialed Digits if the connection was an outgoing connection

n A trunk device identifier if the connection was an incoming call that arrived
on a trunk that does not provide ANI or ICLID

Before After

c

D1
x11

D2
external

C1
hc, ht c

D3
x21

a,c,h C2

D4
x22

c,h

There may also be an additional connection D5C1

in the same initial states as D4C1.

c

D1
x11

D2
external

c

D3
x21

a,c,hC2

D4
x22

c,h

If D5C1 was present, there will now be D5C3
in the same final states as D4C2.

Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21, 22
Application conferences held
conference call C1 with consultation
call C2 at Extension 11.

cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

 CSTAConferenceCallConfEvent
 newCall = D1C2

 CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections
 device after
 11 D1C2
 <*> D2C2
 21 D3C2
 22 D4C2

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections
 device after
 11 D1C2
 <*> D2C2
 21 D3C2
 22 D4C2

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-15

cstaConsultationCall()

The cstaConsultationCall() scenarios below show event flows that result in
different situations:

n making a typical consultation call;

n making a consultation call when the connection placed on hold at the
consulting station drops during the consultation operation;

n a consultation call attempt results in all parties on the held call being on hold
(the held call gets torn down) and the consultation service fails.

cstaConsultationCall() Makes Typical
Consultation Call

Extension 11 had called Extension 12 and is connected to Extension 12 and an
application makes a consultation call from Extension 11 to Extension 21. This
places the connection D1C1 on hold and initiates the connection D1C2.

Before After

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

C1
ht c

D3
x21

C2
c a

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Event Flows

12-16 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-17

cstaConsultationCall() When Party is Placed on
Hold and Then Drops During Consultation

Extension 11 and Extension 12 are connected on call C1. An application makes a
consultation call from Extension 11 to Extension 21. During the consultation
operation, the connection D1C1 is held, the connection D1C2 is initiated, and
then Extension 12 drops from call C1 before the consultation call alerts at
Extension 21.

Before After

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

D3
x21

C2
c a

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 is connected to
Extension 12 and consults to
Extension 21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21

Device D2 hangs up, causing call C1 to clear.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

The consultation call C2 is still up.

Event Flows

12-18 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 is connected to
Extension 12 and consults to
Extension 21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER (R2.1
only)

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER (R2.1
only)

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Device D2 hangs up, causing call C1 to clear.
 CSTAReadyEvent

 agentDevice = 12
 agentID = 12

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

The consultation call C2 is still up.

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-19

cstaConsultationCall() When Consultation
Causes All Parties to be on Hold

Extensions 11 and 12 are on a call. Extension 12 has the call on hold. Extension
11 attempts a consultation, leaving all parties on that call on hold, so the call is
cleared and the consultation fails.

Before After

D1
x11

D2
x12

C1
c h

D1
x11

D2
x12

Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 is connected to
Extension 12 and consults to
Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

The consultation operation fails
because placing the connection on
hold results in its being torn down
(placed all parties on hold).

CSTAUniversalFailureConfEvent
 error = GENERIC_UNSPECIFIED

Placing D1C1 on hold causes call C1
to be cleared, since all parties are on
hold.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Event Flows

12-20 Issue 2.2 Programmer’s Guide

cstaDeflectCall()

The cstaDeflectCall() scenarios below show event flows that result in different
situations:

n successfully redirecting a queued call to a station;

n successfully redirecting a Calling Group call that is alerting at a station to a
Calling Group queue;

n successfully redirecting a Calling Group call alerting at one station to another
station.

The cstaDeflectCall() service is available beginning with MERLIN MAGIX
Release 2.0.

cstaDeflectCall() for Call in Queue to Station –
MERLIN MAGIX Release 2.0 and Later

Extension 12 is connected to a call that is queued for Calling Group 770. An
application requests the cstaDeflectCall() service to redirect the call to
Extension 21 (it is a member of Calling Group 771 that is logged in and idle).

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-21

Before After

D1
x770

D2
x12

C1
a c

D3
x21

D1
x770

D2
x12

c

D3
x21

a
C1

MERLIN MAGIX R2.0
Stream Monitoring Calling Group 770 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaDeflectCall()
 deflectCall = D1C1
 calledDevice = 21

CSTADeflectCallConfEvent
Event confirms that the call has been
redirected.

CSTADivertedEvent
 connection = D1C1
 divertingDevice =Q770
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D1C1
 divertingDevice =Q770
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D1C1
 divertingDevice =Q770
 newDestination = 21
 cause = EC_REDIRECTED

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_REDIRECTED
 lastRedirectionDevice= Q771
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_REDIRECTED
 lastRedirectionDevice= Q771
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770

Event Flows

12-22 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Calling Group 770 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaDeflectCall()
 deflectCall = D1C1
 calledDevice = 21

CSTADeflectCallConfEvent
Event confirms that the call has been
redirected.

CSTADivertedEvent
 connection = D1C1
 divertingDevice =Q770
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D1C1
 divertingDevice =Q770
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D1C1
 divertingDevice =Q770
 newDestination = 21
 cause = EC_REDIRECTED

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = Q770
 cause = EC_REDIRECTED
 lastRedirectionDevice =
 ID_NOT_KNOWN

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = Q770
 cause = EC_REDIRECTED
 lastRedirectionDevice =
 ID_NOT_KNOWN

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-23

cstaDeflectCall() for Station to Calling Group
Queue – MERLIN MAGIX Release 2.0 and Later

A call for Calling Group queue 771 is alerting at Extension 11. The
cstaDeflectCall() service is used to redirect the call to Calling Group queue
770.

Before After

D1
x11

D2
x12

C1
a *

D3
x770

D1
x11

D2
x12

*

D3
x770

aC1

MERLIN MAGIX R2.0
Stream Monitoring Calling Group 770 Stream Monitoring Extension 11 Stream Monitoring Extension 12
cstaDeflectCall()
 deflectCall = D1C1
 calledDevice = 770

CSTADeflectCallConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

Event confirms that the call has been
redirected.

CSTAQueuedEvent
 connection = D3C1
 queue = Q770
 callingDevice =12
 calledDevice = Q770
 numberQueued = 1
 lastRedirectionDevice =
 ID_NOT_KNOWN
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 CSTAQueuedEvent
 connection = D3C1
 queue = Q770
 callingDevice =12
 calledDevice = Q770
 numberQueued = 1
 lastRedirectionDevice =
 ID_NOT_KNOWN
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-24 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Calling Group 770 Stream Monitoring Extension 11 Stream Monitoring Extension 12
cstaDeflectCall()
 deflectCall = D1C1
 calledDevice = 770

CSTADeflectCallConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

Event confirms that the call has been
redirected.

CSTAQueuedEvent
 connection = D3C1
 queue = Q770
 callingDevice =12
 calledDevice = Q771
 numberQueued = 1
 lastRedirectionDevice =
 ID_NOT_KNOWN

 CSTAQueuedEvent
 connection = D3C1
 queue = Q770
 callingDevice =12
 calledDevice = Q771
 numberQueued = 1
 lastRedirectionDevice =
 ID_NOT_KNOWN

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-25

cstaDeflectCall() for Station to Station –
MERLIN MAGIX Release 2.0 and Later

A call for Calling Group queue

771 is alerting at Extension 11. The cstaDeflectCall() service is used to
redirect the call to Extension 21 that is idle and available, but is not a member of
any Calling Group.

Before After

D1
x11

D2
x12

C1
a *

D3
x21

D1
x11

D2
x12

*

D3
x21

aC1

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaDeflectCall()
 deflectCall = D1C1
 calledDevice = 21

CSTADeflectCallConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NEW_CALL
 lastRedirectionDevice =
 ID_NOT_KNOWN
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NEW_CALL
 lastRedirectionDevice =
 ID_NOT_KNOWN
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-26 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
cstaDeflectCall()
 deflectCall = D1C1
 calledDevice = 21

CSTADeflectCallConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_NOT_ANSWERED

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = Q771
 cause = EC_NEW_CALL
 lastRedirectionDevice =
 ID_NOT_KNOWN

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 12
 calledDevice = Q771
 cause = EC_NEW_CALL
 lastRedirectionDevice =
 ID_NOT_KNOWN

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-27

cstaHoldCall()

The cstaHoldCall() scenarios below show event flows that result in different
situations:

n successfully placing a two-party or conference call on hold;

n attempting to place a call on hold in a situation that results in all parties on the
call being on hold (the call is cleared).

cstaHoldCall() Places Call on Hold
The first pair of diagrams below shows a hold scenario in the context of a typical
two-party call. The second pair of diagrams shows a conference call. In the case
of the conference call, the additional connections (or the internal connections)
may also be trunk connections (subject, of course, to the MERLIN LEGEND or
MERLIN MAGIX switch limits on the number of internal and external parties that
may be connected on a conference call).

Before After

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

C1
h c

D1
x11

D2
x12

C1
c c

D3
x21

c, h

There may also be additional connections D4C1

and D5C1.

D1
x11

D2
x12

C1
h c

D3
x21

c, h

If D4C1 or D5C1 are present, their

connection state is unchanged.

Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12

(or Extension 21)
Extension 11 is connected to
Extension 12 (and other extensions if
C1 is conference call) and places
connection on hold.

cstaHoldCall()
 activeCall = D1C1
 reservation = NO

 CSTAHoldCallConfEvent
 CSTAHeldEvent

 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

Event Flows

12-28 Issue 2.2 Programmer’s Guide

cstaHoldCall() Causes Call Clearing When All
Parties On Hold

Extension 11 is connected on call C1 with Extension 12. Extension 12 has placed
C1 on hold. When an application requests that D1C1 be held, this results in all
parties having call C1 held and the call is cleared, even though the
cstaHoldCall() request was successful.

Before After

D1
x11

D2
x12

C1
c h

D1
x11

D2
x12

The MERLIN LEGEND or MERLIN MAGIX
switch clears a call when all parties are on
hold, so placing D1C1 on hold causes the

MERLIN LEGEND switch to clear C1.

Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 is connected to
Extension 12 and places connection
on hold.

cstaHoldCall()
 activeCall = D1C1
 reservation = TRUE

Hold request is successful. CSTAHoldCallConfEvent
All parties on hold on the call result in
the call being torn down.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

 NOTE:
The exact flow of the CSTAConnectionClearedEvents will depend on the
order in which the switch tears down the connections comprising call C1.

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-29

cstaMakeCall()

cstaMakeCall to Local Extension
An application requests that a call be made from Extension 11 to Extension 12.

Before After

D1
x11

D2
x12

D1
x11

D2
x12

C1
c a

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 makes a call to
Extension 12.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 12

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

 CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 makes a call to
Extension 12.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 12

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

 CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Event Flows

12-30 Issue 2.2 Programmer’s Guide

cstaMakeCall to External Number
An application requests that a call be made from Extension 11 to an external
number, 555-1234. The call leaves the switch on trunk 801. Trunk 801 is a PRI
facility.

Before After

D1
x11

D2
801

D1
x11

D2
801

C1
c a

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
Extension 11 makes a call to D2. D2
is an external number.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 95551234#

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

 CSTANetworkReachedEvent
 connection = D2C1
 trunkUsed = T801
 calledDevice = 5551234

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-31

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11
Extension 11 makes a call to D2. D2
is an external number.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 95551234#

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

 CSTANetworkReachedEvent
 connection = D2C1
 trunkUsed = T801
 calledDevice = 5551234

Because trunk 801 is a PRI facility, the MERLIN MAGIX switch provides the
CSTADeliveredEvent and CSTAEstablishedEvent when the call alerts and is
subsequently answered at the far end.
Far end gives an indication that call is
alerting. Note that the calledDevice
will be the called number, which may
or may not match the alerting device.

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 5551234
 callingDevice = 11
 calledDevice = 5551234
 cause = NONE
Private Data
 trunkUsed = T801

Far end gives an indication that call is
answered. Note that the calledDevice
will be the called number, which may
or may not match the answering
device.

CSTAEstablishedEvent
 connection = D2C1
 answeringDevice = 5551234
 callingDevice = 11
calledDevice = 5551234
 cause = NONE
Private Data
 trunkUsed = T801

Extension 11 hangs up. CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

Event Flows

12-32 Issue 2.2 Programmer’s Guide

cstaRetrieveCall()

The first pair of diagrams below shows a retrieve scenario in the context of a
typical two-party call. The second pair of diagrams shows a conference call. In
the case of the conference call, the additional connections (or the internal
connections) may also be trunk connections (subject, of course, to the MERLIN
LEGEND and MERLIN MAGIX switch limits on the number of internal and
external parties that may be connected on a conference call).

 NOTE:
An application may retrieve a call on normal hold, hold-for-transfer, or hold-
for-conference. An attempt to retrieve a call on associative hold is denied.

Before After

D1
x11

D2
x12

C1
h, ht, hc c

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

C1
h, ht, hc c

D3
x21

c, h

There may also be additional connections D4C1

and D5C1.

D1
x11

D2
x12

C1
c c

D3
x21

c, h

If D4C1 or D5C1 are present, their

connection state is unchanged.

ctivity Stream Monitoring Extension 11 Stream Monitoring Extension 12 or 21
Extension 11 is connected to
Extension 12 (and other extensions if
C1 is conference call) and retrieves
held connection.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Service Invocation Event Flows

Programmer’s Guide Issue 2.2 12-33

cstaTransferCall()

An application typically uses cstaConsultationCall() prior to requesting
cstaTransferCall(). In addition, there are certain combinations of manual
operations that are acceptable prerequisites. Refer to the cstaTransferCall()
manual page in Chapter 4 for information on the manual operations.

Typical cstaTransferCall()
Before After

c

D1
x11

D2
x12

C1
ht c

D3
x21

a,c,h C2

“c” at D3C2 cannot be from voice announce or auto-
answer consultation.

D1
x11

D2
x12

c

D3
x21

a,c,hC2

Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12, 21
 cstaTransferCall()

 heldCall = D1C1
 activeCall = D1C2

 CSTATransferCallConfEvent
 newCall = D1C2

 CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections
 device after
 12 D2C2
 21 D3C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections
 device after
 12 D2C2
 21 D3C2

Event Flows

12-34 Issue 2.2 Programmer’s Guide

Basic Extension Calling Event Flows

User Manually Calls Local Extension

A user at Extension 11 makes a call to Extension 12.

Before During (before clear connection)

D1
x11

D2
x12

D1
x11

D2
x12

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 goes off-hook. CSTAServiceInitiatedEvent

 initiatedConnection = D1C1

User at Extension 11 has completed
dialing Extension 12 and switch
originated call.

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

 cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Conversation Occurs - The “During” illustration in the figure above applies at this point.
Application drops Extension 11. cstaClearConnection()

 call = D1C1

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Basic Extension Calling Event Flows

Programmer’s Guide Issue 2.2 12-35

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 goes off-hook. CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

User at Extension 11 has completed
dialing Extension 12 and the switch
originated the call.

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Conversation Occurs - The “During” illustration in the figure above applies at this point.
Application drops Extension 11. cstaClearConnection()

 call = D1C1

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = = EC_CALL_CANCELLED

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

 CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Event Flows

12-36 Issue 2.2 Programmer’s Guide

cstaMakeCall() to Local Extension

An application monitoring Extension 11 uses cstaMakeCall() to make a call to
Extension 12.

Before During (before clear connection)

D1
x11

D2
x12

D1
x11

D2
x12

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Application with stream monitoring
Extension 11 makes call to Extension
12.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 12

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

 CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Application answers call at Extension
12.

 cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Conversation Occurs - The “During” illustration in the figure above applies at this point.
 cstaClearConnection()

 call = D2C1
 CSTAClearConnectionConfEvent
Extension 12 drops first. CSTAConnectionClearedEvent

 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Basic Extension Calling Event Flows

Programmer’s Guide Issue 2.2 12-37

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Application with stream monitoring
Extension 11 makes call to Extension
12.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 12

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

 CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Application answers call at Extension
12.

 cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Conversation Occurs - The “During” illustration in the figure above applies at this point.
 cstaClearConnection()

 call = D2C1
 CSTAClearConnectionConfEvent
Extension 12 drops first. CSTAConnectionClearedEvent

 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAReadyEvent
 agentDevice = 12
 agentID = 12

Event Flows

12-38 Issue 2.2 Programmer’s Guide

cstaMakeCall() Completes Partial Dialing

User at Extension 11 begins dialing Extension 12 manually and then completes
dialing using cstaMakeCall().

Before During (before clear connection)

D1
x11

D2
x12

D1
x11

D2
x12

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 goes off-hook. CSTAServiceInitiatedEvent

 initiatedConnection = D1C1

User at Extension 11 dials digit “1”.
Remaining digit in service request. cstaMakeCall()

 callingDevice = 11
 calledDevice = 2

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

User at Extension 12 manually
answers.

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Conversation Occurs - The “During” illustration in the figure above applies at this point.
Application clears connection D2C1. cstaClearConnection()

 call = D2C1
 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

This causes switch to clear the
remaining connection.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Basic Extension Calling Event Flows

Programmer’s Guide Issue 2.2 12-39

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 goes off-hook. CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

User at Extension 11 dials digit “1”.
Remaining digit in service request. cstaMakeCall()

 callingDevice = 11
 calledDevice = 2

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

User at Extension 12 manually
answers.

 CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Conversation Occurs - The “During” illustration in the figure above applies at this point.
Application clears connection D2C1. cstaClearConnection()

 call = D2C1
 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

This causes switch to clear the
remaining connection.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAReadyEvent
 agentDevice = 12
 agentID = 12

Event Flows

12-40 Issue 2.2 Programmer’s Guide

cstaMakeCall() to External Number

An application monitoring Extension 11 uses cstaMakeCall() to make call to an
external number.

Before During

D1
x11

D2
external

D1
x11

D2
external

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
Application with stream monitoring
Extension 11 makes call to external
number 5551234. Note inclusion of
ARS code (9). If a Pool Access Code
were used instead, it would be
included.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 95551234#

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

The calledDevice in the Network
Reached event does not contain the
ARS digits or Pool Access Codes.

CSTANetworkReachedEvent
 connection = D1C1
 trunkUsed = T801
 calledDevice = 5551234

Conversation Occurs - The “During” illustration in the figure above applies at
this point.
External party drops, causing switch
to drop call.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Basic Extension Calling Event Flows

Programmer’s Guide Issue 2.2 12-41

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11
Application with stream monitoring
Extension 11 makes call to external
number 5551234. Note inclusion of
ARS code (9). If a Pool Access Code
were used instead, it would be
included.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 95551234#

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

The calledDevice in the Network
Reached event does not contain the
ARS digits or Pool Access Codes.

CSTANetworkReachedEvent
 connection = D1C1
 trunkUsed = T801
 calledDevice = 5551234

Conversation Occurs - The “During” illustration in the figure above applies at
this point.
External party drops, causing switch
to drop call.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Event Flows

12-42 Issue 2.2 Programmer’s Guide

cstaMakeCall() to Invalid or Busy Number

An application monitoring Extension 11 makes a call to Extension 12. Extension
12 does not have an available SA and there is no alternate call treatment, so the
caller hears busy tone. In the case of a call to an invalid number, the caller would
hear reorder.

Before During (before clear connection)

D1
x11

D2
x12

D1
x11

D2
x12

C1 i

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Application with stream monitoring
Extension 11 makes call to Extension
12.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 12

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Extension 12 does not have an SA and there is no alternate treatment, so calling user hears audible busy tone (call to
invalid number would hear reorder). Note that there is no delivered event. The “During” illustration in the figure above
applies at this point.
 cstaClearConnection()

 call = D1C1

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Basic Extension Calling Event Flows

Programmer’s Guide Issue 2.2 12-43

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Application with stream monitoring
Extension 11 makes call to Extension
12.

cstaMakeCall()
 callingDevice = 11
 calledDevice = 12

 CSTAMakeCallConfEvent
 newCall = D1C1

 CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Extension 12 does not have an SA and there is no alternate treatment, so calling user hears audible busy tone (call to
invalid number would hear reorder). Note that there is no delivered event. The “During” illustration in the figure above
applies at this point.
 cstaClearConnection()

 call = D1C1

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Event Flows

12-44 Issue 2.2 Programmer’s Guide

Internal Call to DGC Group Arrives at Extension

A call from Extension 12 enters DGC Group 770, and then arrives at an SA
button on Extension 11.

Before After

D1
x11

D2
x12

D1
x11

D2
x12

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 12 makes call to DGC
Group 770.

 cstaMakeCall()
 callingDevice = 12
 calledDevice = 770

 CSTAMakeCallConfEvent
 newCall = D2C1

 CSTAServiceInitiatedEvent
 initiatedConnection = D2C1

User at Extension 11 signs in to DGC
Group and becomes an available
member.

Call arrives at SA button on Extension
11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

User at Extension 11 manually
answers.

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

Basic Extension Calling Event Flows

Programmer’s Guide Issue 2.2 12-45

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 12 makes call to DGC
Group 770.

 cstaMakeCall()
 callingDevice = 12
 calledDevice = 770

 CSTAMakeCallConfEvent
 newCall = D2C1

 CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAServiceInitiatedEvent
 initiatedConnection = D2C1

The call is queued because no agents
are available.

 CSTAQueuedEvent
 connection = D3C1
 queue = Q770
 callingDevice =12
 calledDevice = Q770
 numberQueued = 1

User at Extension 11 signs in to DGC
Group and becomes an available
member.

CSTALoggedOnEvent
 agentDevice = 11
 agentID = 11
 agentGroup = Q770

The call is redirected from the Calling
Group queue to Extension 11.

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

Call arrives at SA button on Extension
11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770

User at Extension 11 manually
answers.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED
PrivateData
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770

Event Flows

12-46 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 12 makes call to DGC
Group 770.

 cstaMakeCall()
 callingDevice = 12
 calledDevice = 770

 CSTAMakeCallConfEvent
 newCall = D2C1

 CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAServiceInitiatedEvent
 initiatedConnection = D2C1

The call is queued because no agents
are available.

 CSTAQueuedEvent
 connection = D3C1
 queue = Q770
 callingDevice =12
 calledDevice = Q770
 numberQueued = 1

User at Extension 11 signs in to DGC
Group and becomes an available
member.

CSTALoggedOnEvent
 agentDevice = 11
 agentID = 11
 agentGroup = Q770

The call is redirected from the Calling
Group queue to Extension 11.

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

Call arrives at SA button on Extension
11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = Q771
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = Q771
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED

User at Extension 11 manually
answers.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = Q771
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = Q771
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED

Incoming Trunk-to-Extension Calling

Programmer’s Guide Issue 2.2 12-47

Incoming Trunk-to-Extension Calling

Trunk Call Arrives at Extension

Incoming trunk call arrives at SA button on Extension 11. Note that beginning in
MERLIN MAGIX 2.0, the call may arrive on a SA or DFT/DPT button.

The notation <DNIS/EXT> indicates that the parameter contains the DNIS if the
call arrived on a facility that provides DNIS (PRI Called Number); otherwise, the
parameter contains the extension number.

The notation <ANI/ICLID/UNK> indicates that the parameter contains the ANI if
the call arrived on PRI or BRI, ICLID if the call arrived on a facility that provides
ICLID, and it has a deviceIDStatus of ID_NOT_KNOWN for all other conditions.

The notation <trunk number> indicates that the parameter contains the trunk dial
plan number that is associated with the call. The parameter will be filled in with
“Txxxx”. The “xxxx” indicates the dial plan id of the trunk.

Before After

D1
x11

D2
external

D1
x11

D2
external

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
Trunk call arrives at SA button on
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE

User at Extension 11 manually
answers.

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE

User at Extension 11 manually hangs
up.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 11
 cause = EC_NONE

Event Flows

12-48 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11
Trunk call arrives at SA, DFT, or DPT
button on Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk number>

User at Extension 11 manually
answers.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk number>

User at Extension 11 manually hangs
up.

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11
Trunk call arrives at SA, DFT, or DPT
button on Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/UNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk number>

User at Extension 11 manually
answers.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/UNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk number>

User at Extension 11 manually hangs
up.

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

Incoming Trunk-to-Extension Calling

Programmer’s Guide Issue 2.2 12-49

Trunk Call Arrives Through DGC Group

Incoming trunk call arrives at SA button on Extension 11 through Calling Group
770.

The notation <ANI/ICLID/UNK> indicates that the parameter contains the ANI if
the call arrived on PRI or BRI, ICLID (with ICLID delay enabled) if the call arrived
on a facility that provides ICLID, and it contains “unknown” for all other conditions.

Before After

D1
x11

D2
external

D1
x11

D2
external

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0
Activity Stream Monitoring Extension 11
Call arrives for Calling Group 770 and no group member is available. Call may
hear announcement, if administered.
User at Extension 11 signs in to DGC
Group and becomes an available
member.

Trunk call arrives at SA button on
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 cause = EC_NONE

Application answers alerting call at
Extension 11.

cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 cause = EC_NONE

Event Flows

12-50 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Activity Stream Monitoring DGC Group 770 Stream Monitoring Extension 11
 CSTAQueuedEvent

 queuedConnection = D3C1
 queue = Q770
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = Q770
 cause = EC_NONE
 numberQueued = 1
Private Data
 trunkUsed = <trunk number>

Call arrives for Calling Group 770 and no group member is available. Call may hear announcement, if administered
User at Extension 11 signs in to DGC
Group and becomes an available
member.

 CSTALoggedOnEvent
 agentDevice = 11
 agentID = 11
 agentGroup = Q770

The call is redirected from the Calling
Group queue to Extension 11.

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

Trunk call arrives at SA button on
Extension 11.

 CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770
 trunkUsed = <trunk number>

Application answers alerting call at
Extension 11.

 cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

User at Extension 11 manually
answers.

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = Q770
 trunkUsed = <trunk number>

Incoming Trunk-to-Extension Calling

Programmer’s Guide Issue 2.2 12-51

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring DGC Group 770 Stream Monitoring Extension 11
 CSTAQueuedEvent

 queuedConnection = D3C1
 queue = Q770
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = Q770
 cause = EC_NONE
 numberQueued = 1
Private Data
 trunkUsed = <trunk number>

Call arrives for Calling Group 770 and no group member is available. Call may hear announcement, if administered
User at Extension 11 signs in to DGC
Group and becomes an available
member.

 CSTALoggedOnEvent
 agentDevice = 11
 agentID = 11
 agentGroup = Q770

The call is redirected from the Calling
Group queue to Extension 11.

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D3C1
 divertingDevice = Q770
 newDestination = 11
 cause = EC_REDIRECTED

Trunk call arrives at SA button on
Extension 11.

 CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = Q770
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED

Application answers alerting call at
Extension 11.

 cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

User at Extension 11 manually
answers.

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = Q770
 lastRedirectionDevice = Q770
 cause = EC_REDIRECTED

Event Flows

12-52 Issue 2.2 Programmer’s Guide

Trunk Call to DGC Group Overflows to DGC
Group Then Arrives at Extension

An incoming trunk call arrives at DGC1 (Group Q711), overflows to DGC2 (Group
Q770), and then arrives at an SA button on Extension 11 (Extension 11 is a
member of DGC2).

An application monitoring Extension 11 will receive the same information about
the caller as in the previous event flow (where the call arrives after passing
through one DGC Group).

The notation <ANI/ICLID/UNK> indicates that the parameter contains the ANI if
the call arrived on PRI or BRI, ICLID (when the ICLID delay is enabled) if the call
arrived on a facility that provides ICLID, and it contains “unknown” for all other
conditions.

The notation <trunk number> indicates that the parameter contains the trunk dial
plan number that is associated with the call. This will be indicated by “Txxxx”
where xxxx indicates the dial plan number.

Before After

D1
x11

D2
external

D1
x11

D2
external

C1 c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0
Activity Stream Monitoring Extension 11
Call arrives for DGC1 and no group member is available. Caller may hear
announcement, if administered. Then call overflows into DGC2.
User at Extension 11 signs in to DGC
Group 2 and becomes an available
member.

Trunk call arrives at SA button on
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 cause = EC_NONE

User at Extension 11 manually
answers.

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 cause = EC_NONE

Incoming Trunk-to-Extension Calling

Programmer’s Guide Issue 2.2 12-53

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11
Call arrives for DGC1 and no group member is available. Caller may hear
announcement, if administered. Then call overflows into DGC2.
User at Extension 11 signs in to DGC
Group and becomes an available
member.

CSTALoggedOnEvent
 agentDevice = 11
 agentID = 11
 agentGroup = Q770

The call is redirected from the Calling
Group queue to DGC1

CSTADivertedEvent
 connection = D3C1
 divertingDevice = <DGC1>
 newDestination = 11
 cause = EC_OVERFLOW

Trunk call arrives at SA button on
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 lastRedirectionDevice = <DGC2>
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = <DGC1>
 trunkUsed = <trunk number>

Application answers alerting call at
Extension 11.

cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 11
 lastRedirectionDevice = <DGC2>
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = <DGC1>
 trunkUsed = <trunk number>

Event Flows

12-54 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11
Call arrives for DGC1 and no group member is available. Caller may hear
announcement, if administered. Then call overflows into DGC2.
User at Extension 11 signs in to DGC
Group and becomes an available
member.

CSTALoggedOnEvent
 agentDevice = 11
 agentID = 11
 agentGroup = Q770

The call is redirected from the Calling
Group queue to DGC1

CSTADivertedEvent
 connection = D3C1
 divertingDevice = <DGC1>
 newDestination = 11
 cause = EC_OVERFLOW

Trunk call arrives at SA button on
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = Q771
 lastRedirectionDevice = <DGC2>
 cause = EC_REDIRECTED

Application answers alerting call at
Extension 11.

cstaAnswerCall()
 alertingCall = D1C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = Q771
 lastRedirectionDevice = <DGC2>
 cause = EC_REDIRECTED

Incoming Trunk-to-Extension Calling

Programmer’s Guide Issue 2.2 12-55

Trunk Call Arrives Through Voice Prompting
Unit, QCC, Voice Mail, or Unmonitored DLC

When an incoming trunk call passes through a Voice Prompting Unit QCC, Voice
Mail, or an unmonitored DLC (here, D2) to a receiving extension (here, D3, x11),
the calling party parameters in the events that flow for a monitor on that extension
appear as if the trunk call came directly to that extension. This allows an
application to pop a screen using the calling party information as soon as the call
alerts (rather than having the voice prompting extension appear there and having
to wait for the transfer event). Of course, when the call passes through a Voice
Prompting Unit, digits may be collected that also appear in events.

The notation <DNIS/EXT> indicates that the parameter contains the DNIS if the
call arrived on a facility that provides DNIS (PRI Called Number); otherwise, the
parameter contains the extension number of the alerting or answering device.

The notation <VP> indicates the voice prompting, QCC, Voice Mail, or
unmonitored DLC extension.

The notation <ANI/ICLID/UNK> indicates that the parameter contains the ANI if
the call arrived on PRI or BRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains “unknown” for all other conditions.

The notation <trunk number> indicates that the parameter contains the trunk dial
plan number that is associated with the call. The parameter will be filled in with
“Txxxx”. The “xxxx” indicates the dial plan id of the trunk.

Before After

D3
x11

D2
<VP>

D1
external

T801

C1
c

c

D3
x11

D2
<VP>

D1
external

T801
cc

C2

Event Flows

12-56 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11

Trunk call arrives and terminates at Voice Prompting Unit.

Voice Prompting Unit makes call to
Extension 11 before transferring
incoming trunk call. Delivered event
contains collected digit information.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode = <collected digits>

User at Extension 11 manually
answers.

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode = <collected digits>

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension VP Stream Monitoring Extension 11

Voice Prompting Unit makes call to
Extension 11 before transferring
incoming trunk call. Delivered event
contains collected digit information.

CSTAHeldEvent
 heldConnection = D2C1
 holdingDevice = VP

 CSTAServiceInitiatedEvent
 initiatedConnection = D2C2

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = < EXT>
 cause = EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = < EXT>
 cause = EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

 CSTATransferredEvent
 primaryOldCall = D2C1
 secondaryOldCall = D2C2
 transferringDevice = VP
 transferredDevice = 11
 cause = EC_VOICE_UNIT_INITIATOR
 transferredConnections

 device
 <ANI/ICLID/UNK>
 11

after
D2C2
D3C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-57

Consultation Event Flows

Consultation calls have the special property of making original caller information
available in private data. Original Caller Information makes it possible for an
application monitoring the extension receiving the consultation call to pop a
screen using the original caller’s information as soon as the consultation call
alerts. In manual transfer and conference scenarios, the point at which the same
application has access to the original caller’s information (and the event
containing that information) varies according to the type of transfer (supervised or
unsupervised) and other factors. Events provide Original Caller Information only
when an application uses cstaConsultationCall() to make the consultation call;
events do not contain the information when manual operations make the
consultation call (as later sections show).

The notation <ANI/ICLID/UNK> indicates that the parameter contains the ANI if
the call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains “unknown” for all other conditions.

The notation <ANI/ICLID/TRK> indicates that the parameter contains the ANI if
the call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains the trunk number for all other conditions.

An application may transfer or conference the original call with the consultation
call. The event flows in this section show a transfer. A conference would be
similar, with conference services, confirmations, and events taking the place of
the transfer operation and events.

Supervised Consultation of Incoming Trunk Call

This consultation scenario is quite powerful in a customer service environment.
An application monitoring the extension receiving the consultation may pop a
screen using information about:

n the extension sending the consultation call (when it alerts or is answered); or,

n the original caller (when the consultation call alerts, is answered, or is
conferenced/transferred with the original caller).

<Collected digits> indicates the possible presence of collected digits.

After connection to trunk call During, before conference/transfer

D1
x11

D2
external

C1
c c

D1
x11

D2
external

C1
ht c

D3
x21

C2
c c

Event Flows

12-58 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Incoming trunk call delivered to
Extension 11, possibly passing
through call prompter.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode =
 <collected digits>

The outside caller is connected to
Extension 11.

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode =
 <collected digits>

Application monitoring Extension 11
makes consultation call to Extension
21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

Call with outside party is put on hold
to make consultation call.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C2

Consultation call from Extension 11 to
Extension 21 is initiated.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Consultation call alerts at Extension
21 with original caller information in
private data.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Extension 21 answers consultation
call.

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Extension 11 and Extension 21 are connected. The “During” illustration in the figure above applies at this point.

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-59

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Application now transfers the original
caller to Extension 21.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

 CSTATransferCallConfEvent
 newCall = D1C3

The T801 device appearing as the
transferredConnections parameter
identifies the trunk connecting the
external party.

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Incoming trunk call delivered to
Extension 11, possibly passing
through call prompter.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

The outside caller is connected to
Extension 11.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

Application monitoring Extension 11
makes consultation call to Extension
21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

Call with outside party is put on hold
to make consultation call.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C2

Consultation call from Extension 11 to
Extension 21 is initiated.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Event Flows

12-60 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Consultation call alerts at Extension
21 with original caller information in
private data.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Extension 21 answers consultation
call.

 CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Extension 11 and Extension 21 are connected. The “During” illustration in the figure above applies at this point.
Application now transfers the original
caller to Extension 21.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

 CSTATransferCallConfEvent
 newCall = D1C3

The T801 device appearing as the
transferredConnections parameter
identifies the trunk connecting the
external party.

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 cause = EC_NEW_CALL
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 cause = EC_NEW_CALL
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-61

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Incoming trunk call delivered to
Extension 11, possibly passing
through call prompter.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

The outside caller is connected to
Extension 11.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

Application monitoring Extension 11
makes consultation call to Extension
21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

Call with outside party is put on hold
to make consultation call.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

 CSTAConsultationCallConfEvent
 newCall = D1C2

Consultation call from Extension 11 to
Extension 21 is initiated.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Event Flows

12-62 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Consultation call alerts at Extension
21 with original caller information in
private data.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Extension 21 answers consultation
call.

 CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Extension 11 and Extension 21 are connected. The “During” illustration in the figure above applies at this point.
Application now transfers the original
caller to Extension 21.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

 CSTATransferCallConfEvent
 newCall = D1C3

The T801 device appearing as the
transferredConnections parameter
identifies the trunk connecting the
external party.

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 cause = EC_NEW_CALL
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 cause = EC_NEW_CALL
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-63

Unsupervised Consultation of Incoming Trunk
Call

This consultation scenario is similar to the previous one, but the transfer is
unsupervised, rather than supervised. The consulting party does not have the
opportunity to speak with the consulted party.

<Collected digits> indicates the possible presence of collected digits.

After connection to trunk call After Unsupervised Transfer

D1
x11

D2
external

C1
c c

D1
x11

D2
external

c

D3
x21

C2 c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Incoming trunk call delivered to
Extension 11, possibly passing
through call prompter.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode =
 <collected digits>

The outside caller is connected to
Extension 11.

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode =
 <collected digits>

Application monitoring Extension 11
makes consultation call to Extension
21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

Call with outside party is put on hold
to make consultation call.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C2

Consultation call from Extension 11 to
Extension 21 is initiated.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Event Flows

12-64 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Consultation call alerts at Extension
21 with original caller information in
private data.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Application now does unsupervised
transfer to Extension 21.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

 CSTATransferCallConfEvent
 newCall = D1C3

The T801 device appearing as the
transferredConnections parameter
identifies the trunk connecting the
external party.

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

Extension 21 manually answers the
call.

No event here since this call no longer
has a connection at this device.

User at Extension 21 manually
answers.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE
Private Data
 userEnteredCode =
 <collected digits>

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-65

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Incoming trunk call delivered to
Extension 11, possibly passing
through call prompter.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

The outside caller is connected to
Extension 11.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
 Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

Application monitoring Extension 11
makes consultation call to Extension
21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

Call with outside party is put on hold
to make consultation call.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C2

Consultation call from Extension 11 to
Extension 21 is initiated.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Consultation call alerts at Extension
21 with original caller information in
private data.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Application now does unsupervised
transfer to Extension 21.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

Event Flows

12-66 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
 CSTATransferCallConfEvent

 newCall = D1C2

The T801 device appearing as the
transferredConnections parameter
identifies the trunk connecting the
external party.

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections
 cause = EC_NEW_CALL

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections
 cause = EC_NEW_CALL

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

Extension 21 answers the call. CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 No event here since this call no longer
has a connection at this device.

CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-67

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
Incoming trunk call delivered to
Extension 11, possibly passing
through call prompter.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause EC_NEW_CALL
Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

The outside caller is connected to
Extension 11.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
 Private Data
 userEnteredCode =
 <collected digits>
 trunkUsed = <trunk number>

Application monitoring Extension 11
makes consultation call to Extension
21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

Call with outside party is put on hold
to make consultation call.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

 CSTAConsultationCallConfEvent
 newCall = D1C2

Consultation call from Extension 11 to
Extension 21 is initiated.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Consultation call alerts at Extension
21 with original caller information in
private data.

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice =
 <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 userEnteredCode =
 <collected digits>

Application now does unsupervised
transfer to Extension 21.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

Event Flows

12-68 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 21
 CSTATransferCallConfEvent

 newCall = D1C2

The T801 device appearing as the
transferredConnections parameter
identifies the trunk connecting the
external party.

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections
 cause = EC_NEW_CALL

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections
 cause = EC_NEW_CALL

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/UNK>
 21

after
D2C2
D3C2

Extension 21 answers the call. CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 No event here since this call no longer
has a connection at this device.

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_TRANSFER

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-69

Supervised Consultation of Internal Call

Extension 12 manually calls Extension 11. An application monitoring Extension 11
makes a consultation call to Extension 21 and then does a supervised transfer.

During, before consultation During, before conference/transfer

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

C1
ht c

D3
x21

C2
c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call from Extension 12 alerts at
Extension 11.
CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

Extension 11 manually answers.
CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

Application monitoring Extension 11
initiates consultation call to Extension
21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Event Flows

12-70 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 Consultation call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 User at Extension 21 manually
answers.
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Extensions 11 and 21 are connected.
Application makes supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-71

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call from Extension 12 alerts at
Extension 11.
CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Extension 11 manually answers.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Application monitoring Extension 11
initiates consultation call to Extension
21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 Consultation call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 User at Extension 21 manually
answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

Event Flows

12-72 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Extensions 11 and 21 are connected.
Application makes supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-73

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call from Extension 12 alerts at
Extension 11.
CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Extension 11 manually answers.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Application monitoring Extension 11
initiates consultation call to Extension
21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 Consultation call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 User at Extension 21 manually
answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

Event Flows

12-74 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Extensions 11 and 21 are connected.
Application makes supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-75

Unsupervised Consultation of Internal Call

Extension 12 manually calls Extension 11. An application monitoring Extension 11
makes a consultation call to Extension 21 and then does an unsupervised
transfer.

During, before consultation After transfer

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

c

D3
x21

C2 c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call from Extension 12 alerts at
Extension 11.
CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

Extension 11 manually answers.
CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

Application monitoring Extension 11
initiates consultation call to Extension
21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Event Flows

12-76 Issue 2.2 Programmer’s Guide

Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 Consultation call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-77

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Application makes unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

No event here since this call no longer
has a connection at this device.

CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

User at Extension 21 manually
answers.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-78 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call from Extension 12 alerts at
Extension 11.
CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Extension 11 manually answers.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Application monitoring Extension 11
initiates consultation call to Extension
21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 Consultation call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Application makes unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-79

MERLIN MAGIX R2.0, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 User at Extension 21 manually
answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

No event here since this call no longer
has a connection at this device.

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-80 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call from Extension 12 alerts at
Extension 11.
CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Extension 11 manually answers.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Application monitoring Extension 11
initiates consultation call to Extension
21.
cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAConsultationCallConfEvent
 newCall = D1C2

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

 Consultation call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Application makes unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-81

MERLIN MAGIX R2.1 and later, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 User at Extension 21 manually
answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

No event here since this call no longer
has a connection at this device.

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-82 Issue 2.2 Programmer’s Guide

Consultation with Consulted Device Busy (No
SA)

Extension 12 manually calls Extension 11. Extension 11 attempts to consult with
Extension 21 which does not have an available SA button (or any alternate call
treatment administered). The consulting party at Extension 11 hears busy tone.

During, before consultation During, before conference/transfer

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

C1
ht c

D3
x21

C2
c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 12 manually calls
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

User at Extension 11 answers. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE

Application monitoring Extension 11
requests consultation call to
Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

 CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C2

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Consultation call cannot be delivered to Extension 21 and user at Extension 11 hears busy. The “During, before
conference/transfer” diagram illustrates this point in the event flow.
Application hangs up the attempted
consultation.

cstaClearConnection()
 call = D1C2

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C2
 releasingDevice = 11

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-83

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Application retrieves the original
active call.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

User directs application to retry
consultation to Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

 CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C3

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C3

Again, no SA at Extension 21, so user at Extension 11 hears busy.
Extension manually hangs up the
attempted consultation.

CSTAConnectionClearedEvent
 droppedConnection = D1C3
 releasingDevice = 11

Extension 11 reconnects to the
original caller.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Event Flows

12-84 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 12 manually calls
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

User at Extension 11 answers. CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Application monitoring Extension 11
requests consultation call to
Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

 CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C2

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Consultation call cannot be delivered to Extension 21 and user at Extension 11 hears busy. The “During, before
conference/transfer” diagram illustrates this point in the event flow.
Application hangs up the attempted
consultation.

cstaClearConnection()
 call = D1C2

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C2
 releasingDevice = 11

Application retrieves the original
active call.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

User directs application to retry
consultation to Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

 CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAConsultationCallConfEvent
 newCall = D1C3

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C3

Again, no SA at Extension 21, so user at Extension 11 hears busy.

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-85

MERLIN MAGIX R2.0, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension manually hangs up the
attempted consultation.

CSTAConnectionClearedEvent
 droppedConnection = D1C3
 releasingDevice = 11

Extension 11 reconnects to the
original caller.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Event Flows

12-86 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 12 manually calls
Extension 11.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

User at Extension 11 answers. CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NEW_CALL

Application monitoring Extension 11
requests consultation call to
Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

 CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

 CSTAConsultationCallConfEvent
 newCall = D1C2

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Consultation call cannot be delivered to Extension 21 and user at Extension 11 hears busy. The “During, before
conference/transfer” diagram illustrates this point in the event flow.
Application hangs up the attempted
consultation.

cstaClearConnection()
 call = D1C2

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C2
 releasingDevice = 11

Application retrieves the original
active call.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

User directs application to retry
consultation to Extension 21.

cstaConsultationCall()
 activeCall = D1C1
 calledDevice = 21

 CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

 CSTAConsultationCallConfEvent
 newCall = D1C3

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C3

Again, no SA at Extension 21, so user at Extension 11 hears busy.

Consultation Event Flows

Programmer’s Guide Issue 2.2 12-87

MERLIN MAGIX R2.1 and later, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension manually hangs up the
attempted consultation.

CSTAConnectionClearedEvent
 droppedConnection = D1C3
 releasingDevice = 11

Extension 11 reconnects to the
original caller.

cstaRetrieveCall()
 heldCall = D1C1

 CSTARetrieveCallConfEvent
 CSTARetrievedEvent

 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Event Flows

12-88 Issue 2.2 Programmer’s Guide

Conference Event Flows

The event flows in this section show the events that applications receive in
various conference scenarios. The Consultation Event Flows cover the
conference scenarios where an application uses cstaConsultationCall() in
preparation for using cstaConferenceCall(). The event flows in this section
apply when a user has manually placed a call on hold for conference, then used
cstaMakeCall() (or manually made a call) and then uses cstaConferenceCall()
to conference the calls.

Not all event flows in this section contain Original Call Information (OCI) in private
data. OCI is only provided:

n in the private data of the CSTADeliveredEvent and CSTAEstablished-
Event when cstaConferenceCall() is used in conjunction with csta-
ConsultationCall();

n in the private data of a CSTAEstablishedEvent following an unsupervised
conference operation

Conference Event Flows

Programmer’s Guide Issue 2.2 12-89

Unsupervised Conference of Local Extension to
Local Extension

Before After

D1
x11

D2
x12

C1
c c

D3
x21

c

D1
x11

D2
x12

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests unsupervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C3

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

Extensions 11 and 12 are hearing ringback. Extension 21 is alerting.

Event Flows

12-90 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12

CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Extension 21 answers call.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Conference Event Flows

Programmer’s Guide Issue 2.2 12-91

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C2

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 12
 21

after
D1C2
D2C2
D3C2

 device
 11
 12
 21

after
D1C2
D2C2
D3C2

 device
 11
 12
 21

after
D1C2
D2C2
D3C2

Extensions 11 and 12 are hearing ringback. Extension 21 is alerting.
 Extension 21 answers call.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-92 Issue 2.2 Programmer’s Guide

Supervised Conference of Local Extension to
Local Extension

Before After

D1
x11

D2
x12

C1
c c

D3
x21

c

D1
x11

D2
x12

c

D3
x21

c C3

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 Extension 21 answers
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests supervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C3

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

Conference Event Flows

Programmer’s Guide Issue 2.2 12-93

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Extension 21 answers
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests supervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C3

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

 device
 11
 12
 21

after
D1C3
D2C3
D3C3

Event Flows

12-94 Issue 2.2 Programmer’s Guide

Unsupervised Conference of Incoming Trunk
Call

Extension 11 is connected to a trunk call on an SA button.

The notation <ANI/ICLID/UNK> indicates that the parameter contains the ANI if
the call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains “unknown” for all other conditions.

The notation <ANI/ICLID/TRK> indicates that the parameter contains the ANI if
the call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains the trunk number for all other conditions.

The notation <DNIS/TRUNK> indicates that this parameter contains PRI DNIS, if
any, otherwise it contains the trunk facility.

Before consultation After

D1
x11

D2
external

C1
c c

D3
x21

c

D1
x11

D2
external

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests unsupervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C3

Conference Event Flows

Programmer’s Guide Issue 2.2 12-95

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 21
CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C3
D2C3
D3C3

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C3
D2C3
D3C3

Extension 11 and trunk party are hearing ringback.

CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>

Extension 21 answers.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>

Event Flows

12-96 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an external
party on a call.

User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C2

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C2
D2C2
D3C2

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C2
D2C2
D3C2

Extension 11 and trunk party are hearing ringback.
 Extension 21 answers.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>

Conference Event Flows

Programmer’s Guide Issue 2.2 12-97

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an external
party on a call.

User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C2

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C2
D2C2
D3C2

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C2
D2C2
D3C2

Extension 11 and trunk party are hearing ringback.
 Extension 21 answers.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Event Flows

12-98 Issue 2.2 Programmer’s Guide

Supervised Conference of Incoming Trunk Call

Before consultation After

D1
x11

D2
external

C1
c c

D3
x21

c

D1
x11

D2
external

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an external
party on a call.

User at Extension 11 presses CONFERENCE
button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Extension 21 answers.
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests supervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C3

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C3
D2C3
D3C3

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C3
D2C3
D3C3

Conference Event Flows

Programmer’s Guide Issue 2.2 12-99

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an external
party on a call.

User at Extension 11 presses
CONFERENCE button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests supervised
conference.
cstaConferenceCall()
 heldCall = D1C1
 activeCall = D1C2

CSTAConferenceCallConfEvent
 newCall = D1C2

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

CSTAConferencedEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 confController = 11
 addedParty = 21
 conferenceConnections

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C2
D2C2
D3C2

 device
 11
 <ANI/ICLID/TRK>
 21

after
D1C2
D2C2
D3C2

Event Flows

12-100 Issue 2.2 Programmer’s Guide

Transfer Event Flows

The event flows in this section show the events that applications receive in
various transfer scenarios. The Consultation Event Flows cover the conference
scenarios where an application uses cstaConsultationCall() in preparation for
using cstaTransferCall(). The event flows in this section apply when a user has
manually placed a call on hold for transfer, then used cstaMakeCall() (or
manually made a call) and then uses cstaTransferCall() to transfer the calls.

The event flows in this section do not contain the Original Caller Information in
private data because that is passed only when cstaTransferCall() is used in
conjunction with cstaConsultationCall().

Unsupervised Transfer of Local Extension to
Local Extension

Before After

D1
x11

D2
x12

C1
c c

D3
x21

D1
x11

D2
x12

c

D3
x21

c C2

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-101

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE

Extension 21 answers call.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE

Event Flows

12-102 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 Extension 21 answers call.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-103

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 Extension 21 answers call.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

Event Flows

12-104 Issue 2.2 Programmer’s Guide

Supervised Transfer of Local Extension to Local
Extension

Before After

D1
x11

D2
x12

C1
c c

D3
x21

D1
x11

D2
x12

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 Extension 21 answers.
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-105

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Event Flows

12-106 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on a call.
User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-107

Unsupervised Transfer of Incoming Trunk Call

Extension 11 is connected to a trunk call on an SA button.

The notation <ANI/ICLID/UNK> indicates that this parameter contains ANI or
ICLID when known; it contains “unknown” for all other conditions.

The notation <ANI/ICLID/TRK> indicates that the parameter contains the ANI if
the call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains the trunk number for all other conditions.

The notation <DNIS/EXT> indicates that this parameter contains PRI DNIS, if
any, otherwise it contains the extension number.

Before consultation After

D1
x11

D2
external

C1
c c

D3
x21

D1
x11

D2
external

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

Event Flows

12-108 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 21
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C3
D3C3

 device
 <ANI/ICLID/TRK>
 21

after
D2C3
D3C3

 Extension 21 answers.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-109

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 Extension 21 answers.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_TRANSFER

Event Flows

12-110 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 Extension 21 answers.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_TRANSFER

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-111

Unsupervised Transfer of Outgoing Trunk Call

Extension 11 is connected to a trunk call on a button. Extension 11 made the
call.

The notation <ANI/ICLID/UNK> indicates that this parameter contains ANI or
ICLID when known; it contains “unknown” for all other conditions.

The notation <ANI/ICLID/TRK> indicates that the parameter contains the ANI if
the call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains the trunk number for all other conditions.

The notation <DNIS/EXT> indicates that this parameter contains PRI DNIS, if
any, otherwise it contains the extension number.

Before consultation After

D1
x11

D2
external

C1
c c

D3
x21

D1
x11

D2
external

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice <ANI/ICLID/UNK>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice <ANI/ICLID/UNK>

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

Event Flows

12-112 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 21
CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C3
D3C3

 device
 <ANI/ICLID/TRK>
 21

after
D2C3
D3C3

 Extension 21 answers.
CSTAEstablishedEvent
 establishedConnection = D3C3
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 21
 cause = EC_NONE

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-113

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice <ANI/ICLID/UNK>

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice <ANI/ICLID/UNK>

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 Extension 21 answers.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 21
 cause = EC_TRANSFER

Event Flows

12-114 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests unsupervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 Extension 21 answers.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = 21
 cause = EC_TRANSFER

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-115

Supervised Transfer of Incoming Trunk Call

Before consultation After

D1
x11

D2
external

C1
c c

D3
x21

D1
x11

D2
external

c

D3
x21

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Extension 21 answers.
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Application requests supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C3
D3C3

 device
 <ANI/ICLID/TRK>
 21

after
D2C3
D3C3

Event Flows

12-116 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-117

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
Extension 11 is connected to an
external party on a call.

User at Extension 11 presses
TRANSFER button.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials Extension 21 and then the call alerts at Extension
21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

Application requests supervised
transfer.
cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

 device
 <ANI/ICLID/TRK>
 21

after
D2C2
D3C2

Event Flows

12-118 Issue 2.2 Programmer’s Guide

Transfer Return with Answer

Extension 11 has transferred a call from Extension 22 to Extension 12 (where it is
alerting). The Transfer return timer expires, and the call returns to Extension 11
and alerts. An application uses cstaAnswerCall() to answer the returned call.

Before After

D1
x11

D2
x12

C2
a

D4
x22

c

D1
x11

D2
x12

C2

D4
x22

c

c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
User at Extension 11 has transferred a call from Extension 22 to Extension 12, where it is alerting. The Transfer return
timer now causes that call to re-alert at Extension 11.
CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

Application uses answer to reconnect
to returning call.
cstaAnswerCall()
 alertingCall = D1C2

CSTAAnswerCallConfEvent
Established event indicates
successful completion.
CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Connecting to the transfer return at
the transfer originator clears the
connection at the transfer destination.
CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-119

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
User at Extension 11 has transferred a call from Extension 22 to Extension 12, where it is alerting. The Transfer return
timer now causes that call to re-alert at Extension 11.
CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL

 CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL

Application uses answer to reconnect
to returning call.
cstaAnswerCall()
 alertingCall = D1C2

CSTAAnswerCallConfEvent
Established event indicates
successful completion.
CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_RECALL

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Connecting to the transfer return at
the transfer originator clears the
connection at the transfer destination.
CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Event Flows

12-120 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
User at Extension 11 has transferred a call from Extension 22 to Extension 12, where it is alerting. The Transfer return
timer now causes that call to re-alert at Extension 11.

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL

Application uses answer to reconnect
to returning call.
cstaAnswerCall()
 alertingCall = D1C2

CSTAAnswerCallConfEvent
Established event indicates
successful completion.
CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 12
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 12
 cause = EC_RECALL

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Connecting to the transfer return at
the transfer originator clears the
connection at the transfer destination.
CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-121

Call is Answered with Voice Announce on
Speaker; cstaTransferCall() Follows

Extension 11 and Extension 12 are connected on call C1. The user at
Extension 11 presses transfer, then post selects a Voice Announce button, then
calls Extension 21. Since Extension 11 made the call on a Voice Announce
button, Extension 21 answers the Voice Announce call on speaker. The
application then transfers call C1 to Extension 21. After the transfer, the
consultation call will again alert at the transfer destination (using a new call
identifier).

Before After

D1
x11

D2
x12

C1
c c

D3
x21

D1
x11

D2
x12

c

D3
x21

a C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
User at Extension 11 presses
TRANSFER, then post selects a Voice
Announce button. User at
extension 11 then dials extension 21.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 The Voice Announce Feature on
Speaker immediately answers the
incoming call.
CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTADeliveredEvent
 connection = D3C3
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C3
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE

The transferred call alerts at
Extension 21.
CSTADeliveredEvent
 connection = D3C3
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE

Event Flows

12-122 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTATransferCallConfEvent
 newCall = D3C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

before
D2C1
D3C2

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
User at Extension 11 presses
TRANSFER, then post selects a Voice
Announce button. User at
extension 11 then dials extension 21.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

 The Voice Announce Feature on
Speaker immediately answers the
incoming call.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

The transferred call alerts at
Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTATransferCallConfEvent
 newCall = D3C2

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-123

MERLIN MAGIX R2.0, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

before
D2C1
D3C2

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

 CSTAReadyEvent
 agentDevice = 21
 agentID = 21

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D1C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D1C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D1C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

Event Flows

12-124 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
User at Extension 11 presses
TRANSFER, then post selects a Voice
Announce button. User at
extension 11 then dials extension 21.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

 The Voice Announce Feature on
Speaker immediately answers the
incoming call.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

The transferred call alerts at
Extension 21.
CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTATransferCallConfEvent
 newCall = D3C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

before
D2C1
D3C2

after
D2C2
D3C2

 device
 12
 21

before
D2C1
D3C2

after
D2C2
D3C2

 device
 12
 21

before
D2C1
D3C2

after
D2C2
D3C2

 CSTAReadyEvent
 agentDevice = 21
 agentID = 21

 Extension 21 answers.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D1C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D1C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D1C2
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_TRANSFER

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-125

Trunk-to-Trunk Transfer

Extension 11 receives an incoming trunk call on a DFT. Extension 11 then
(manually) puts it on hold for transfer, and (manually) transfers the call to an
external party.

The notation <ANI/ICLID/UNK> indicates that this parameter contains ANI if the
call arrived on BRI or PRI, ICLID if the call arrived on a facility that provides
ICLID, and it contains “unknown” for all other conditions.

The notation <DNIS/EXT> indicates that this parameter contains DNIS if the call
arrived on a facility that provides DNIS. Otherwise, the parameter contains the
extension number.

Before After

D1
x11

D2
801

D3
802

D1
x11

D2
801

c

D3
802

c C2

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 &
MERLIN MAGIX R1.0 and 1.5

Activity Stream Monitoring Extension 11
Extension 11 receives an incoming
trunk call on a DFT. If the call arrives
on an SA, an application monitoring
Extension 11 would receive a
delivered event.

User at Extension 11 answers call. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NONE

User at Extension 11 presses
TRANSFER.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials an external
number.

CSTANetworkReachedEvent
 connection = D2C2
 trunkUsed = T801
 calledDevice = 95551234

Application does trunk-to-trunk
transfer.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

The device in the newCall parameter
is T802.

CSTATransferCallConfEvent
 newCall = D3C3

Event Flows

12-126 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 &
MERLIN MAGIX R1.0 and 1.5, continued

Activity Stream Monitoring Extension 11
 CSTATransferredEvent

 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = T802
 transferredConnections

 device
 <ANI/ICLID/TRK>
 5551234

after
D2C3
D3C3

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11
Extension 11 receives an incoming
trunk call on an SA, DFT, or DPT
button. An application monitoring
Extension 11 would receive a
delivered event.

CSTADeliveredEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL

User at Extension 11 answers call. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL

User at Extension 11 presses
TRANSFER.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials an external
number.

CSTANetworkReachedEvent
 connection = D2C2
 trunkUsed = T801
 calledDevice = 95551234

Application does trunk-to-trunk
transfer.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

The device in the newCall parameter
is T802.

CSTATransferCallConfEvent
 newCall = D3C3

 CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = T802
 transferredConnections

 device
 <ANI/ICLID/TRK>
 5551234

after
D2C3
D3C3

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-127

MERLIN MAGIX R2.1and later
Activity Stream Monitoring Extension 11
Extension 11 receives an incoming
trunk call on an SA, DFT, or DPT
button. An application monitoring
Extension 11 would receive a
delivered event.

CSTADeliveredEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL

User at Extension 11 answers call. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL

User at Extension 11 presses
TRANSFER.

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 dials an external
number.

CSTANetworkReachedEvent
 connection = D2C2
 trunkUsed = T801
 calledDevice = 95551234

Application does trunk-to-trunk
transfer.

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

The device in the newCall parameter
is T802.

CSTATransferCallConfEvent
 newCall = D3C3

 CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = T802
 transferredConnections

 device
 <ANI/ICLID/TRK>
 5551234

after
D2C3
D3C3

Event Flows

12-128 Issue 2.2 Programmer’s Guide

Transfer into DGC Group with No Members
Available; Member Becomes Available

Extension 11 is connected to Extension 12 on call C1. Extension 11 puts call C1
on hold-for-transfer, manually makes a call to a DGC Group (with no members
available), and then manually transfers the call to the DGC Group. Extension 22,
a member of the DGC Group, then becomes available and the call rings at
Extension 22. Note that D4 is DGC queue 770.

Before After

D1
x11

D3
x22

C1 D2
x12

c c

D1
x11

D3
x22

C2

D2
x12

c

a

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22

User at Extension 11 manually places call C1 on hold and makes a call to an unstaffed DGC Group.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

User at Extension 11 manually completes the transfer to the DGC Group.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice =
 transferredConnections

 device
 12

after
D2C3

Extension 22 becomes an available member of DGC Group.
 CSTADeliveredEvent

 connection = D3C3
 alertingDevice = 22
 callingDevice = 12
 calledDevice = 22
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C3
 alertingDevice = 22
 callingDevice = 12
 calledDevice = 22
 cause = EC_NONE

Transfer Event Flows

Programmer’s Guide Issue 2.2 12-129

MERLIN MAGIX R2.0
Stream Monitoring Extension
11

Stream Monitoring
Extension 12

Stream Monitoring
Extension 22

Stream Monitoring DGC
Group 770

User at Extension 11 manually presses the TRANSFER button, placing call C1 on hold, and makes a call to unstaffed DGC Group
770.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection =
 D1C2

CSTAQueuedEvent
 queuedConnection = D4C2
 queue = Q770
 callingDevice = 11
 calledDevice = Q770
 cause = EC_NONE
 numberQueued = 1

 CSTAQueuedEvent
 queuedConnection = D4C2
 queue = Q770
 callingDevice = 12
 calledDevice = Q770
 cause = EC_NONE
 numberQueued = 1

User at Extension 11 manually presses the TRANSFER button to complete the transfer.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = Q770
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = Q770
 transferredConnections

 device
 12
 Q770

after
D2C2
D4C2

 device
 12
 Q770

after
D2C2
D4C2

Extension 22 becomes an available member of DGC Group 770.
 CSTALoggedOnEvent

 agentDevice = 22
 agentID = 22
 agentGroup = Q770

 CSTADivertedEvent
 connection = D4C2
 divertingDevice = Q770
 newDestination = 22
 cause =
EC_REDIRECTED

CSTADivertedEvent
 connection = D4C2
 divertingDevice = Q770
 newDestination = 22
 cause =
EC_REDIRECTED

CSTADivertedEvent
 connection = D4C2
 divertingDevice = Q770
 newDestination = 22
 cause = EC_REDIRECTED

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 22
 callingDevice = 12
 calledDevice = 22
 lastRedirectionDevice =
 Q770
 cause =
EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 22
 callingDevice = 12
 calledDevice = 22
 lastRedirectionDevice =
 Q770
 cause =
EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

Event Flows

12-130 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring
Extension 11

Stream Monitoring
Extension 12

Stream Monitoring
Extension 22

Stream Monitoring DGC
Group 770

User at Extension 11 manually presses the TRANSFER button, placing call C1 on hold, and makes a call to unstaffed DGC
Group 770.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause =EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection =
D1C2

CSTAQueuedEvent
 queuedConnection =
 D4C2
 queue = Q770
 callingDevice = 11
 calledDevice = Q770
 cause = EC_NONE
 numberQueued = 1

 CSTAQueuedEvent
 queuedConnection =
 D4C2
 queue = Q770
 callingDevice = 12
 calledDevice = Q770
 cause = EC_NONE
 numberQueued = 1

User at Extension 11 manually presses the TRANSFER button to complete the transfer.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = Q770
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = Q770
 transferredConnections

 device
 12
 Q770

after
D2C2
D4C2

 device
 12
 Q770

after
D2C2
D4C2

Extension 22 becomes an available member of DGC Group 770.
 CSTALoggedOnEvent

 agentDevice = 22
 agentID = 22
 agentGroup = Q770

 CSTADivertedEvent
 connection = D4C2
 divertingDevice = Q770
 newDestination = 22
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C2
 divertingDevice = Q770
 newDestination = 22
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C2
 divertingDevice = Q770
 newDestination = 22
 cause =
EC_REDIRECTED

 CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 22
 callingDevice = 11
 calledDevice = <Q770>
 lastRedirectionDevice =
 Q770
 cause =
EC_REDIRECTED

CSTADeliveredEvent
 connection = D3C2
 alertingDevice = 22
 callingDevice = 11
 calledDevice = <Q770>
 lastRedirectionDevice =
 Q770
 cause =
EC_REDIRECTED

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-131

Feature Invocation Event Flows

Account Code Entry/Forced Account Code Entry
(ACE/FACE)

Extension 11 is on an external call. During the call, Extension 11 enters an
account code. Extension 11 hangs up.

Before After

D1
x11

D2
external

C1
c *

D1
x11

D2
external

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
Extension 11 is active on a call at an SA, DFT, or DPT button. During the call,
Extension 11 enters an account code.
Extension 11 hangs up. CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11
Extension 11 is active on a call at an SA, DFT, or DPT button. During the call,
Extension 11 enters an account code.
Extension 11 hangs up. CSTAConnectionClearedEvent

 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE
Private Data
 accountCode = <account code>

 CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Event Flows

12-132 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11
Extension 11 is active on a call at an SA, DFT, or DPT button.
During the call, Extension 11 enters
an account code.

CSTACallInformationEvent
 connection = D1C1
 device = 11
 accountCode = <account code>

Extension 11 hangs up. CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE
Private Data
 accountCode = <account code>

 CSTAReadyEvent
 agentDevice = 11
 agentID = 11

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-133

Barge-In

Barge-In to Busy Extension
Extension 11 is busy on a call with Extension 12. Extension 21, attempting to call
Extension 11, meets busy condition and will barge-in.

Before During

D1
x11

D2
x12

C1
c c

D3
x21 C2

c

D1
x11

D2
x12

c

D3
x21

c C1

c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on call C1.
 Extension 21 calls Extension 11.

CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

 User at Extension 21 hears busy and
presses BARGE-IN button.

 CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Extension 21 barges into call C1 with Extensions 11, 21, and 21 hearing barge-in tone. Note that there is no event
indicating that the barge-in has occurred. The “During” illustration in the figure above applies at this point.
 User at Extension 21 hangs up.

No event occurs when the user that barged in drops off.

Event Flows

12-134 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Extensions 11 and 12 are connected on call C1.
 Extension 21 calls Extension 11..

CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

 User at Extension 21 hears busy and
presses BARGE-IN button.

 CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Extension 21 barges into call C1 with Extensions 11, 21, and 21 hearing barge-in tone. Note that there is no event
indicating that the barge-in has occurred. The “During” illustration in the figure above applies at this point.
 User at Extension 21 hangs up.

 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

No event occurs when the user that barged in drops off.

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-135

Barge-In Overrides Do Not Disturb at Extension
Extension 21, attempting to call Extension 11, meets an active Do Not Disturb
condition and will barge-in. An application will use cstaAnswerCall() to answer
the Barge-In call.

Before After

D1
x11

D2
x21 C1

c

D1
x11

D2
x21

c c C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21

Extension 11 has an active Do Not Disturb condition.
 Extension 21 calls Extension 11.

CSTAServiceInitiatedEvent
 initiatedConnection = D2C1

 User at Extension 21 hears busy tone
(because an active Do Not Disturb
condition is encountered) and presses
BARGE-IN button.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NONE

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NONE

Application answers barge-in call.
cstaAnswerCall()
 alertingCall = D1C1

CSTAAnswerCallConfEvent
CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NONE

 cstaClearConnection()
 call = D2C1

 CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Event Flows

12-136 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21

Extension 11 has an active Do Not Disturb condition.
 Extension 21 calls Extension 11.

CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAServiceInitiatedEvent
 initiatedConnection = D2C1

 User at Extension 21 hears busy tone
(because an active Do Not Disturb
condition is encountered) and presses
BARGE-IN button.

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NEW_CALL

Application answers barge-in call.
cstaAnswerCall()
 alertingCall = D1C1

CSTAAnswerCallConfEvent
CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_NEW_CALL

 cstaClearConnection()
 call = D2C1

 CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAReadyEvent
 agentDevice = 21
 agentID = 21

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-137

Call Forward/Follow Me

Forwarding Extension Answers (Forward to
Internal Number Only)

Extension 11 places a call to forwarding Extension 12. The call will alert at both
the Extension 12 and the forwarding destination, Extension 21. The call is
answered at Extension 12.

Before After

D1
x11

D2
x12

C1
c a

D3
x21

D1
x11

D2
x12

c

D3
x21

c C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

 Application answers call at Extension
12
cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Event Flows

12-138 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Call delivered to Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

 Application answers call at Extension
12.
cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

Call is cleared from Extension 21.
CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-139

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

Call delivered to Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

 Application answers call at Extension
12.
cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

Call is cleared from Extension 21.
CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Event Flows

12-140 Issue 2.2 Programmer’s Guide

Forward-to Extension Answers
Extension 11 places a call to forwarding Extension 12. The call will alert at both
the Extension 12 and the forwarding destination, Extension 21. The call is
answered at Extension 21.

Before After

D1
x11

D2
x12

D3
x21

D1
x11

D2
x12

c

D3
x21

c

C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Call is delivered to Extension 12 and forwarded to Extension 21, where it is alerting. There is no CSTADeliveredEvent
when a forwarded call alerts at the extension to which it was forwarded.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Forwarded call still has connection at
the forwarding extension, so events
continue to flow on that monitor.

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

User at Extension 21 manually
answers. An application monitoring an
extension that manually answers a
forwarded call will get a
CSTAEstablishedEvent for the
forwarded call.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When Forward-to device answers,
connection is cleared from the
forwarding extension.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-141

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call forwards and alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

 Application answers call at Extension
21.
cstaAnswerCall()
 alertingCall = D3C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Forwarded call still has connection at
the forwarding extension, so events
continue to flow on that monitor.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When Forward-to device answers,
connection is cleared from the
forwarding extension.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = = EC_CALL_CANCELLED

Event Flows

12-142 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call forwards and alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 21
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 21
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

 Application answers call at Extension
21.
cstaAnswerCall()
 alertingCall = D3C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

Forwarded call still has connection at
the forwarding extension, so events
continue to flow on that monitor.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

When Forward-to device answers,
connection is cleared from the
forwarding extension.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = = EC_CALL_CANCELLED

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-143

Delayed Call Forwarding - Forwarding Extension
Answers (Forward to Internal Number Only)

Extension 11 places a call to forwarding Extension 12. The call will alert for one or
more ring cycles at the forwarding extension before being forwarded. The call is
answered at Extension 12 before the call is forwarded.

Before After

D1
x11

D2
x12

C1
c a

D3
x21

D1
x11

D2
x12

c

D3
x21

c C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

 Application answers call before call is
forwarded.
cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Event Flows

12-144 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 Application answers call before call is
forwarded.
cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-145

Call Forward on Busy
When an extension forwards a call using the Call Forward on Busy feature, the
forwarded call does not appear at the forwarding extension. Thus, the event flow
is similar to the other forwarding event flows, but the forwarding extension cannot
connect to the call before it forwards.

Extension 11 calls Extension 12, who is busy and has the Call Forward on Busy
feature active.

Before After

D1
x11

D2
x12

D3
x21

D1
x11

D2
x12

c

D3
x21

c

C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Call cannot alert at Extension 12, so it forwards and alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 User at Extension 21 manually
answers.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Event Flows

12-146 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Call cannot alert at Extension 12, so it forwards and alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL

 Application answers call at Extension
21.
cstaAnswerCall()
 alertingCall = D3C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

 CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-147

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Call cannot alert at Extension 12, so it forwards and alerts at Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 Application answers call at Extension
21.
cstaAnswerCall()
 alertingCall = D3C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause =
 EC_CALL_FORWARD_ALWAYS

Event Flows

12-148 Issue 2.2 Programmer’s Guide

Remote Call Forwarding with Delay
Extension 11 calls Extension 12, where the call forwards with delay to an external
number.

Before After

D1
x11

D2
x12

D3
external

D1
x11

D2
x12

c

D3
external

c

C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 calls Extension 12.
CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Call delivered to Extension 12 and
rings for delay period.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Call forwards.

CSTANetworkReachedEvent
 connection = D3C1
 trunkUsed = T801
 calledDevice = Unknown

Forwarded call still has connection at
the forwarding extension, so events
continue to flow on that monitor.
CSTANetworkReachedEvent
 connection = D3C1
 trunkUsed = T801
 calledDevice = Unknown

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

When call forwards off the switch,
connection is cleared from the
forwarding extension.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-149

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call delivered to Extension 12 and
rings for delay period.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call forwards.

CSTANetworkReachedEvent
 connection = D3C1
 trunkUsed = T801
 calledDevice = Unknown

Forwarded call still has connection at
the forwarding extension, so events
continue to flow on that monitor.
CSTANetworkReachedEvent
 connection = D3C1
 trunkUsed = T801
 calledDevice = Unknown

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

When call forwards off the switch,
connection is cleared from the
forwarding extension.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

Event Flows

12-150 Issue 2.2 Programmer’s Guide

Remote Call Forwarding Without Delay
Extension 11 calls Extension 12 which forwards the call without delay to an
external number. The call never has a connection to Extension 12.

Before After

D1
x11

D2
x12

D3
external

D1
x11

D2
x12

c

D3
external

c

C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 calls Extension 12.
CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Call forwards.
CSTANetworkReachedEvent
 connection = D3C1
 trunkUsed = T801
 calledDevice = Unknown

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 calls Extension 12.
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Call forwards.
CSTANetworkReachedEvent
 connection = D3C1
 trunkUsed = T801
 calledDevice = Unknown

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-151

Call Screening

Extension 11 places a call to Extension 12, where the Call Screening feature
active. The call alerts at Extension 12, but is not answered, so the call receives
Voice Mail treatment. When the call is answered by the Voice Mail port
(Extension 21), Extension 12 is added to the call as a Call Screener. After
establishing the identity of the caller and the reason for the call, the user at
Extension 12 chooses to join the call as a regular call participant, causing the
Voice Mail port to be dropped from the call.

Before After

D1
x11

D2
x12

D3
x21

D1
x11

D2
x12

C1
c c

D3
x21

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice =
 ID_NOT_KNOWN
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice =
 ID_NOT_KNOWN
 cause = EC_NEW_CALL

Event Flows

12-152 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later (continued)
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

The call is not answered, so it receives Voice Mail treatment.
CSTAQueuedEvent
 connection = D4C1
 queue = D4
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTAQueuedEvent
 connection = D4C1
 queue = D4
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTADivertedEvent
 connection = D4C1
 divertingDevice = D4
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C1
 divertingDevice = D4
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C1
 divertingDevice = D4
 newDestination = 21
 cause = EC_REDIRECTED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = D4
 cause = EC_REDIRECTED

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = D4
 cause = EC_REDIRECTED

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = D4
 cause = EC_REDIRECTED

The Voice Mail port answers the call.
CSTAEstablishedEvent
 connection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = D4
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 connection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = D4
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 connection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = D4
 cause = EC_REDIRECTED

Extension 12 is added to the call as a Call Screener.
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 connection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice =
 ID_NOT_KNOWN
 cause = EC_SILENT_MONITOR

Extension 12 joins the call as a regular call participant, causing the Voice Mail port to be dropped from the call.
CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-153

Call Waiting

User at Extension 11 places call to Extension 12 which waits. There is not a
Delivered event for the arrival of that call at Extension 12 since it has not yet
alerted there.

Before After

D1
x11

D2
x12

D3
x21

C2

c

c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 calls Extension 12. CSTAServiceInitiatedEvent

 initiatedConnection = D1C1

Extension 12 is busy on another call and Extension 12 has Call Waiting, so call C1 waits on Extension 12.
User at Extension 12 hangs up call
C2.

 CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12

Call C1 now alerts at Extension 12. CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

Application answers call. cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12

Event Flows

12-154 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 calls Extension 12. CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

Extension 12 is busy on another call and Extension 12 has Call Waiting, so call C1 waits on Extension 12.
User at Extension 12 hangs up call
C2.

 CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12

Call C1 now alerts at Extension 12. CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Application answers call. cstaAnswerCall()
 alertingCall = D2C1

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-155

Callback Queuing (CBQ)

Callback - User Stays On Line
Extension user at Extension 11 places a call to Extension 12, which is busy. User
at Extension 11 invokes the callback feature and stays connected to the call.

Before After

D1
x11

D2
x12

D3
x21

C1

c

c

D1
x11

D2
x12

C2
c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 makes call C2 to
Extension 12.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

The caller hears busy tone and invokes CBQ. The user at Extension 11 hears queuing tone.
User at Extension 12 hangs up call
C1.

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12

User at Extension 11 hears de-queue
tone and call C2 now alerts at
Extension 12.

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Application answers call. cstaAnswerCall()
 alertingCall = D2C2

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Event Flows

12-156 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 makes call C2 to
Extension 12.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

The caller hears busy tone and invokes CBQ. The user at Extension 11 hears queuing tone.
User at Extension 12 hangs up call
C1.

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12

 CSTAReadyEvent
 agentDevice = 12
 agentID = 12

User at Extension 11 hears de-queue
tone and call C2 now alerts at
Extension 12.

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Application answers call. cstaAnswerCall()
 alertingCall = D2C2

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-157

Callback - Caller Goes On Hook on Callback
Call

Extension user at Extension 11 places a call to Extension 12, which is busy. User
at Extension 11 invokes the callback feature and hangs up.

Before After

D1
x11

D2
x12

D3
x21

C1

c

c

D1
x11

D2
x12

C2
c c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 makes call C2 to
Extension 12.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

The caller hears busy tone and invokes CBQ. The user at Extension 11 hears queuing tone.
Application hangs up callback call.
The call transitions into Associative
Hold at Extension 11.

cstaClearConnection()
 call = D1C2

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C2
 releasingDevice = 11
 cause = EC_CANCELLED

User at Extension 12 hangs up call
C1.

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12

User at Extension 11 hears priority ring. Application cannot use cstaAnswerCall() to answer this priority ring. User
manually answers priority ring.
 CSTAServiceInitiatedEvent

 initiatedConnection = D1C2

User at Extension 11 hears de-queue
tone and call C3 now alerts at
Extension 12.

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Event Flows

12-158 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11 Stream Monitoring Extension 12
User at Extension 11 makes call C2 to
Extension 12.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

The caller hears busy tone and invokes CBQ. The user at Extension 11 hears queuing tone.
Application hangs up callback call.
The call transitions into Associative
Hold at Extension 11.

cstaClearConnection()
 call = D1C2

 CSTAClearConnectionConfEvent
 CSTAConnectionClearedEvent

 droppedConnection = D1C2
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

 CSTAReadyEvent
 agentDevice = 11
 agentID = 11

User at Extension 12 hangs up call
C1.

 CSTAReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

User at Extension 11 hears priority ring. Application cannot use cstaAnswerCall() to answer this priority ring. User
manually answers priority ring.
 CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C3

User at Extension 11 hears de-queue
tone and call C3 now alerts at
Extension 12.

CSTADeliveredEvent
 connection = D2C3
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C3
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-159

Callback Queuing for Pool or ARS; Caller Waits
Off-Hook

Extension user at Extension 11 places an external call using the ARS code or a
Pool Code. The outgoing call queues for a facility. In this flow, the calling user
does not go on hook.

Before After

D1
x11

D2
external

D1
x11

D2
external

C1
c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
User at Extension 11 makes call C1 to
external number.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

The call queues for a facility. The user at Extension 11 hears queuing tone.
The facility becomes available. User at Extension 11 hears de-queue tone and
switch makes outbound call on trunk.
Note that there is no ARS digit or Pool
Code in the calledDevice parameter.

CSTANetworkReachedEvent
 connection = D2C1
 trunkUsed = T801
 calledDevice = 5551234

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11
User at Extension 11 makes call C1 to
external number.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

The call queues for a facility. The user at Extension 11 hears queuing tone.
The facility becomes available. User at Extension 11 hears de-queue tone and
switch makes outbound call on trunk.
Note that there is no ARS digit or Pool
Code in the calledDevice parameter.

CSTANetworkReachedEvent
 connection = D2C1
 trunkUsed = T801
 calledDevice = 5551234

Event Flows

12-160 Issue 2.2 Programmer’s Guide

Callback Queuing for Pool or ARS; Caller Goes
On Hook

Extension user at Extension 11 places an external call using the ARS code or a
Pool Code. The outgoing call queues for a facility. In this flow, the calling user
goes on hook.

Before After

D1
x11

D2
external

D1
x11

D2
external

C1
c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
User at Extension 11 makes call C1 to
external number.

CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

The call queues for a facility. The user at Extension 11 hears queuing tone.
The user at Extension 11 goes on
hook.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

The facility becomes available. User at Extension 11 hears priority ring. User
cannot use answer to answer this priority ring. User manually answers priority
ring.
User at Extension 11 goes off-hook. CSTAServiceInitiatedEvent

 initiatedConnection = D1C2
Note that there is no ARS digit or Pool
Code in the calledDevice parameter.

CSTANetworkReachedEvent
 connection = D1C2
 trunkUsed = T801
 calledDevice = 5551234

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-161

MERLIN MAGIX R2.0 and later
Activity Stream Monitoring Extension 11
User at Extension 11 makes call C1 to
external number.

CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C1

The call queues for a facility. The user at Extension 11 hears queuing tone.
The user at Extension 11 goes on
hook.

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

The facility becomes available. User at Extension 11 hears priority ring. User
cannot use answer to answer this priority ring. User manually answers priority
ring.
User at Extension 11 goes off-hook. CSTANotReadyEvent

 agentDevice = 11
 agentID = 11

 CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Note that there is no ARS digit or Pool
Code in the calledDevice parameter.

CSTANetworkReachedEvent
 connection = D1C2
 trunkUsed = T801
 calledDevice = 5551234

Event Flows

12-162 Issue 2.2 Programmer’s Guide

Camp On

The Camp On Feature allows a user to

n complete a transfer to a busy station;

n transfer a call and have the call return using the Camp On return timer
rather than the Transfer return timer (The Camp On return timer is typically
longer than the Transfer return timer).

Camp On Completes Transfer to Busy Extension;
Destination Comes Available and Answers

Extension 11 has placed a call with Extension 22 on hold for transfer (manually or
with an application using cstaConsultationCall()). The user at Extension 11
transfers the call to Extension 12 (manually or using cstaTransferCall()), who is
busy on a call with Extension 21. The transferred call camps on for Extension 12.
Extension 12 hangs up on its call with Extension 21and the camped on call alerts
at Extension 12, where the user answers it.

Before After

D1
x11

D2
x12

C2 c

D3
x21

C3

c

c

D4
x22

C1

ht

c

D1
x11

D2
x12

C4
c

D4
x22

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-163

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
Extension 11 presses TRANSFER
button to transfer call with Extension
22 to Extension 12.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Extension 11 dials Extension 12,
hears busy and presses transfer. Call
automatically camps on to
Extension 12.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = /* none */
 transferredConnections
 device after
 22 D4C4

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = /* none */
 transferredConnections
 device after
 22 D4C4

Transferred call is now camped on for Extension 12.
 User at Extension 12 finishes with

other call.
CSTAConnectionClearedEvent
 droppedConnection = D2C3
 releasingDevice = 12
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D2C4
 alertingDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D2C4
 alertingDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

 Application answers camped-on call.
cstaAnswerCall()
 alertingCall = D2C4

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D2C4
 answeringDevice = 12
 callingDevice =22
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C4
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_NONE

Event Flows

12-164 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
Extension 11 presses TRANSFER
button to transfer call with Extension
22 to Extension 12.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Extension 11 dials Extension 12,
hears busy and presses transfer. Call
automatically camps on to
Extension 12.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = /* none */
 transferredConnections
 device after
 22 D4C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = /* none */
 transferredConnections
 device after
 22 D4C2

Transferred call is now camped on for Extension 12.
 User at Extension 12 finishes with

other call.
CSTAReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAConnectionClearedEvent
 droppedConnection = D2C3
 releasingDevice = 12
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

 Application answers camped-on call.
cstaAnswerCall()
 alertingCall = D2C2

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-165

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
Extension 11 presses TRANSFER
button to transfer call with Extension
22 to Extension 12.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Extension 11 dials Extension 12,
hears busy and presses transfer. Call
automatically camps on to
Extension 12.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = /* none */
 transferredConnections
 device after
 22 D4C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = /* none */
 transferredConnections
 device after
 22 D4C2

Transferred call is now camped on for Extension 12.
 User at Extension 12 finishes with

other call.
CSTAReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAConnectionClearedEvent
 droppedConnection = D2C3
 releasingDevice = 12
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

 Application answers camped-on call.
cstaAnswerCall()
 alertingCall = D2C2

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

Event Flows

12-166 Issue 2.2 Programmer’s Guide

 NOTE:
The callingDevice parameter in the CSTADeliveredEvent and
CSTAEstablishedEvent contains the transfer source (in this case an
internal extension, but in the case of an outside call, the trunk identifier or
ANI/ICLID).

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-167

Camp On Completes Transfer to Non-Busy
Extension; Destination Answers

This use of Camp On extends causes the call to use the Camp On return timer
instead of the transfer return timer before returning to the transfer originator.

Extension 11 has placed a call with Extension 22 on hold for transfer (manually or
with an application using cstaConsultationCall()). The user at Extension 11
transfers the call to Extension 12 (manually or using cstaTransferCall()). The
transferred call camps on for Extension 12. Extension 12 answers it. The event
flow shows Extension 11 manually making the transfer and begins with the first
press of the TRANSFER button to place the call with Extension 22 on hold-for-
transfer.

During After

D1
x11

D2
x12

C2 c

D4
x22

C1

ht

c

a

D1
x11

D2
x12

C3
c

D4
x22

Event Flows

12-168 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
Extension 11 presses TRANSFER
button to transfer call with Extension
22 to Extension 12.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

The “During” illustration in the figure above applies at this point.
Extension 11 invokes Camp On.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D2C3
 22 D4C3

Extension 11 invokes Camp On.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D2C3
 22 D4C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D1C3
 22 D4C3

 Application answers camped-on call.
cstaAnswerCall()
 alertingCall = D2C3

 CSTAAnswerCallConfEvent
 CSTAEstablishedEvent

 establishedConnection = D2C3
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C3
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-169

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
Extension 11 presses TRANSFER
button to transfer call with Extension
22 to Extension 12.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

The “During” illustration in the figure above applies at this point.
Extension 11 invokes Camp On.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D2C2
 22 D4C2

Extension 11 invokes Camp On.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D2C2
 22 D4C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D1C2
 22 D4C2

 Application answers camped-on call.
cstaAnswerCall()
 alertingCall = D2C2

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

Event Flows

12-170 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
Extension 11 presses TRANSFER
button to transfer call with Extension
22 to Extension 12.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C2
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

The “During” illustration in the figure above applies at this point.
Extension 11 invokes Camp On.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D2C2
 22 D4C2

Extension 11 invokes Camp On.
CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D2C2
 22 D4C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 12
 transferredConnections
 device after
 12 D1C2
 22 D4C2

 Application answers camped-on call.
cstaAnswerCall()
 alertingCall = D2C2

 CSTAAnswerCallConfEvent
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

 CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

CSTAEstablishedEvent
 establishedConnection = D2C2
 answeringDevice = 12
 callingDevice = 22
 calledDevice = 12
 cause = EC_TRANSFER

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-171

Camp On Return with Answer

Before After

D1
x11

D2
x12

C2
camp

D4
x22

c

D1
x11

D2
x12

C2

D4
x22

c

c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
User at Extension 11 has transferred a call to Extension 12, where it is camped On. The Camp On return timer now
causes that call to re-alert at Extension 11.
Camp On return timer expires.
CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

Application uses answer to reconnect
to returning camp on call.
cstaAnswerCall()
 alertingCall = D1C2

CSTAAnswerCallConfEvent
Established event also indicates
successful completion.
CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

Event Flows

12-172 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
User at Extension 11 has transferred a call to Extension 12, where it is camped On. The Camp On return timer now
causes that call to re-alert at Extension 11.
Camp On return timer expires.
CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

Application uses answer to reconnect
to returning camp on call.
cstaAnswerCall()
 alertingCall = D1C2

CSTAAnswerCallConfEvent
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

Established event also indicates
successful completion.
CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 11
 cause = EC_RECALL

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-173

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 22
User at Extension 11 has transferred a call to Extension 12, where it is camped On. The Camp On return timer now
causes that call to re-alert at Extension 11.
Camp On return timer expires.
CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 connection = D1C2
 alertingDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

Application uses answer to reconnect
to returning camp on call.
cstaAnswerCall()
 alertingCall = D1C2

CSTAAnswerCallConfEvent
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

Established event also indicates
successful completion.
CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 12
 cause = EC_RECALL

CSTAEstablishedEvent
 connection = D1C2
 answeringDevice = 11
 callingDevice = 22
 calledDevice = 12-*
 cause = EC_RECALL

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C2
 releasingDevice = 12
 cause = EC_NONE

Event Flows

12-174 Issue 2.2 Programmer’s Guide

Coverage

Coverage allows a call ringing at one extension (a sender) to ring at another
extension (or extensions) at the same time and to be answered at either
extension.

Coverage; Receiver Answers
A call placed from Extension 11 to Extension 12. Extension 12 is covered by
Extension 21. The call is answered at Extension 21 using a cover button.

Before After

D1
x11

D2
x12

C1
c a

D3
x21

D1
x11

D2
x12

c

D3
x21

c

C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

An application monitoring a receiver
does not get a CSTADeliveredEvent
when a call alerts on a COVER button.

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

User at Extension 21 manually
answers the call.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

When receiver uses COVER button to
answer call, the call is removed from
Extension 12.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-175

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Call delivered to Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

 User at Extension 21 manually
answers the call.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

When receiver uses COVER button to
answer call, the call is removed from
Extension 12.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

Event Flows

12-176 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

Call delivered to Extension 21.
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

 User at Extension 21 manually
answers the call.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

When receiver uses COVER button to
answer call, the call is removed from
Extension 12.
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-177

Coverage; Calling Group is Receiver
When a calling group is a coverage receiver, the call is removed from the sending
extension when the call leaves the coverage group and is sent to an available
calling group member.

The event flow is similar to that in the previous event flow, but the CSTA-
ConnectionClearedEvent flows because the connection is removed from the
sending extension.

In the event flow below, Extension 21 is a coverage group member that becomes
available.

Before After

D1
x11

D2
x12

C1
c a

D3
x21

D1
x11

D2
x12

c

D3
x21

c

C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Call covers to receiving coverage group. Appearance remains at sending extension.
Group member Extension 21 becomes available and call is sent to Extension 21.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Extension 21 answers coverage call.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

 CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

Event Flows

12-178 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call covers to receiving coverage group. Appearance remains at sending extension.
CSTAQueuedEvent
 queuedConnection = D4C1
 queue = <DGC>
 callingDevice = 11
 calledDevice = <DGC>
 numberQueued = 1
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAQueuedEvent
 queuedConnection = D4C1
 queue = <DGC>
 callingDevice = 11
 calledDevice = <DGC>
 numberQueued = 1
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Group member Extension 21 becomes available and call is sent to Extension 21.
 CSTALoggedOnEvent

 agentDevice = 21
 agentID = 21
 agentGroup = <DGC>

CSTADivertedEvent
 connection = D4C1
 divertingDevice = <DGC>
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C1
 divertingDevice = <DGC>
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C1
 divertingDevice = <DGC>
 newDestination = 21
 cause = EC_REDIRECTED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

 CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Extension 21 answers coverage call.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

 CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-179

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

Call covers to receiving coverage group. Appearance remains at sending extension.
CSTAQueuedEvent
 queuedConnection = D4C1
 queue = <DGC>
 callingDevice = 11
 calledDevice = 12
 numberQueued = 1
 cause = EC_NONE

CSTAQueuedEvent
 queuedConnection = D4C1
 queue = <DGC>
 callingDevice = 11
 calledDevice = 12
 numberQueued = 1
 cause = EC_NONE

Group member Extension 21 becomes available and call is sent to Extension 21.
 CSTALoggedOnEvent

 agentDevice = 21
 agentID = 21
 agentGroup = <DGC>

CSTADivertedEvent
 connection = D4C1
 divertingDevice = <DGC>
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C1
 divertingDevice = <DGC>
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D4C1
 divertingDevice = <DGC>
 newDestination = 21
 cause = EC_REDIRECTED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED

Extension 21 answers coverage call.
 CSTANotReadyEvent

 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = <DGC>
 cause = EC_REDIRECTED

Event Flows

12-180 Issue 2.2 Programmer’s Guide

Coverage; Sender Answers
A call placed from Extension 11 to Extension 12. Extension 12 is covered by
Extension 21. The call is answered at Extension 11 using a SA button.

Before After

D1
x11

D2
x12

C1
c a

D3
x21

D1
x11

D2
x12

c

D3
x21

c C1

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

An application monitoring a receiver
does not get a CSTADeliveredEvent
when a call alerts on a COVER button.

User at Extension 12 answers the call. An application could use cstaAnswerCall() as well.
CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-181

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

Call delivered to Extension 21
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

User at Extension 12 answers the call. An application could use cstaAnswerCall() as well.
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Event Flows

12-182 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

Call delivered to Extension 21
CSTADeliveredEvent
 connection = D3C1
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = 12
 cause = EC_CALL_FORWARD

User at Extension 12 answers the call. An application could use cstaAnswerCall() as well.
 CSTANotReadyEvent

 agentDevice = 12
 agentID = 12

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-183

Direct Voice Mail – Transfer and Dial Feature
Code

D1 is on a call. D1 pressess the transfer button and dials #5612 (#56 is the
feature code for Direct Voice Mailand 12 is the extension od the station voice mail
is for). The call is transferred to D3, which is a Voice Mail port. D4 (not shown) is
ts extension 12 and D5 (not shown) is the DGC Queue for Voice Mail.

Before After

D1
x11

D2C1
c c

D3
x21

D1
x11

D2

c

D3
x21

a C2

Event Flows

12-184 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
User at Extension 11 presses
TRANSFER, then dials #5612 to go to
Voice Mail for 12

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NONE

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTADeliveredEvent
 connection = D3C3
 alertingDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_NONE

CSTATransferCallConfEvent
 newCall = D3C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

before
D2C1
D3C2

after
D2C3
D3C3

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-185

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
User at Extension 11 presses
TRANSFER, then dials #5612 to go to
Voice Mail for 12

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CST

ADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

 CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

 after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Event Flows

12-186 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
User at Extension 11 presses
TRANSFER, then dials #5612 to go to
Voice Mail for 12

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTAQueuedEvent
 queuedConnection = D1C1
 queue = QDGCQ
 callingDevice = 11
 calledDevice = 12
 cause = EC_CALL_FORWARD

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

 CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

CSTATransferCallConfEvent
 newCall = D1C2

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

 after
D2C2
D3C2

 device
 12
 21

after
D2C2
D3C2

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-187

Direct Voice Mail – Use Feature or Programmed
Button

D1 is on a call. D1 pressess the Direct Voice Mail button and then dials 12 (who
is the coverage sender). D3 is a member of the calling Group (DGC) proving
coverage.

Before After

D1
x11

D2C1
c c

D3
x21

2
D1
x11

D2

c

D3
x21

a C3

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
User at Extension 11 presses DVM
BUTTON, then dials 12 to go to Voice
Mail for 12

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

cstaTransferCall()
 heldCall = D1C1
 activeCall = D1C2

Stream Monitoring Extension 11 Stream Monitoring Extension 21
CSTATransferCallConfEvent
 newCall = D3C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 12
 21

before
D2C1
D3C2

after
D2C3
D3C3

 device
 12
 21

after
D2C3
D3C3

Event Flows

12-188 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
User at Extension 11 presses DVM
button then dials 12 to go to Voice
Mail fot extension 12

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTATransferCallConfEvent
 newCall = D3C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 QDGCQ
 22

 after
D5C2
D2C2

 device
 QDGCQ
 22

after
D5C2
D2C2

CSTAConnectionClearedEvent
 droppedConnection = D4C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D4C2
 releasingDevice = 12
 cause = EC_NONE

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

 CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTAConnectionClearedEvent
droppedConnection = D1C2
releasingDevice = D1
cause = EC_CALL_CANCELLED

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-189

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
User at Extension 11 presses DVM
button then dials 12 to go to Voice
Mail fot extension 12

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTAQueuedEvent
 queuedConnection = D5C2
 queue = QDGCQ
 callingDevice = 11
 calledDevice = 12
 lastRedierctionDevice = 12
 cause = EC_CALL_FORWARD

CSTATransferCallConfEvent
 newCall = D3C3

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

CSTATransferredEvent
 primaryOldCall = D1C1
 secondaryOldCall = D1C2
 transferringDevice = 11
 transferredDevice = 21
 transferredConnections

 device
 QDGCQ
 22

 after
D5C2
D2C2

 device
 QDGCQ
 22

after
D5C2
D2C2

CSTAConnectionClearedEvent
 droppedConnection = D4C2
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D4C2
 releasingDevice = 12
 cause = EC_NONE

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADivertedEvent
 connection = D5C2
 divertingDevice =QDGC
 newDestination = 21
 cause = EC_REDIRECTED

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 22
 calledDevice = 12
 cause = EC_REDIRECTED
lastRedirectionDevice = QDGC
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

CSTADeliveredEvent
 alertingConnection = D3C2
 alertingDevice = 21
 callingDevice = 22
 calledDevice = 12
 cause = EC_REDIRECTED
lastRedirectionDevice = QDGC
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 22

 CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 22
 calledDevice = 12
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

CSTAEstablishedEvent
 establishedConnection = D3C2
 answeringDevice = 21
 callingDevice = 22
 calledDevice = 12
 lastRedirectionDevice = QDGC
 cause = EC_REDIRECTED

Event Flows

12-190 Issue 2.2 Programmer’s Guide

Stream Monitoring Extension 11 Stream Monitoring Extension 21
CSTAConnectionClearedEvent
droppedConnection = D1C2
releasingDevice = D1
cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
droppedConnection = D1C2
releasingDevice = D1
cause = EC_CALL_CANCELLED

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-191

Park

Parking a Call
The user at Extension 12 parks a call with Extension 11.

Before After

D1
x11

D2
x12

C1
c c

D1
x11

D2
x12

c C1

MERLIN MAGIX Release 2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12

Extensions 11 and 12 are connected on call C1.
Extension 11 presses TRANSFER
button.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Extension 11 dials “11”, and presses
TRANSFER again to complete park
operation.

CSTAConnectionClearedEvent
 droppedConnection = D1C2
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

The call is parked.

MERLIN MAGIX Release 2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12

Extensions 11 and 12 are connected on call C1.
Extension 11 presses TRANSFER
button.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11
 cause = EC_TRANSFER

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

Extension 11 dials “11”, and presses
TRANSFER again to complete park
operation.

CSTAConnectionClearedEvent
 droppedConnection = D1C2
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

The call is parked.

Event Flows

12-192 Issue 2.2 Programmer’s Guide

Reconnecting to Parked Call Before Timer
Expires

Extension 11 has parked a call (as in the scenario above) and now uses
cstaRetrieveCall() to access that call. Manual operation to access that call will
also cause the CSTARetrievedEvent to flow.

Before After

D1
x11

D2
x12

C1
c h

D1
x11

D2
x12

c C1 c

Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 has parked call C1 (to which Extension 12 is connected).

cstaRetrieveCall()
 heldCall = D1C1

CSTARetrieveCallConfEvent
CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-193

Parked Call Returns
When a call is parked and remains parked long enough that the Park Return
Timer expires, then the held connection for the call is cleared at the parking party
and the parked call returns to the parking party and alerts.

Before After

D1
x11

D2
x12

C1
c h

D1
x11

D2
x12

c C2 a

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 has parked call C1 (to which Extension 12 is connected) and the
Park Return Tmer expires.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_NONE
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12
Extension 11 has parked call C1 (to which Extension 12 is connected) and the
Park Return Tmer expires.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_RECALL

CSTADeliveredEvent
 connection = D1C1
 alertingDevice = 11
 callingDevice = 12
 calledDevice = 11
 cause = EC_RECALL

 NOTE:
In some circumstances the call identifiers C1 and C2 will be the same; in
others, they will be different.

Event Flows

12-194 Issue 2.2 Programmer’s Guide

Pickup

A user may use the pickup feature to pickup a parked call, an alerting call, or a
held call.

Pickup Parked, Alerting, or Held Internal Call
Extension 11 has an alerting, held, or parked call C1 with Extension 12.
Extension 21 will use the Pickup feature to pickup that call.

Before After

D1
x11

D2
x12

C1
c a, h

D3
x21

parked

D1
x11

D2
x12

C1
c

D3
x21

c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Extensions 21 goes off-hook to pickup

call and dials feature code.
CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

The call pickup feature now connects the call to the party that is picking up.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 After feature access, the activating
connection clears.
CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_NONE

 No events flow on this monitor for the
call that has been picked up.

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

Extension 12 hangs up. No event on
this monitor.

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-195

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Extensions 21 goes off-hook to pickup

call and dials feature code.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

 After feature access, the activating
connection clears.
CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_CALL_PICKUP
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_CALL_PICKUP
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 21
 cause = EC_CALL_PICKUP
Private Data
 originalCallInfo
 callingDevice = 12
 calledDevice = 11

The call pickup feature now connects the call to the party that is picking up.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 Extension 12 hangs up.
CSTAReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Event Flows

12-196 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 Extensions 21 goes off-hook to pickup

call and dials feature code.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

 After feature access, the activating
connection clears.
CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 11
 cause = EC_CALL_PICKUP

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 11
 cause = EC_CALL_PICKUP

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 12
 calledDevice = 11
 cause = EC_CALL_PICKUP

The call pickup feature now connects the call to the party that is picking up.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 Extension 12 hangs up.
CSTAReadyEvent
 agentDevice = 12
 agentID = 12

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

 NOTE:
There CSTAConnectionClearedEvent will have a cause of EC_NONE
when the picked up call is alerting and EC_CALL_CANCELLED when the
call is parked or on hold.

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-197

Pickup Parked, Alerting, or Held External Call
Extension 11 has an alerting, held, or parked call C1 with an outside party.
Extension 21 will use the Pickup feature to pickup that call.

Before After

D1
x11

D2C1
ca, h

D3
x21

parked

D1
x11

D2C1
c

D3
x21

c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 21
 Extensions 21 goes off-hook to pickup

call and dials feature code.
CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

The call pickup feature now connects the call to the party that is picking up.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 After feature access, the activating
connection clears.
CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_NONE

 No events flow on this monitor for the
call that has been picked up.

 Extension 12 hangs up. No event on
this monitor.

Event Flows

12-198 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 21
 Extensions 21 goes off-hook to pickup

call and dials feature code.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

 After feature access, the activating
connection clears.
CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

The call pickup feature now connects the call to the party that is picking up.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_PICKUP
Private Data
 trunkUsed = <trunk>

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_PICKUP
Private Data
 trunkUsed = <trunk>

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-199

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 21
 Extensions 21 goes off-hook to pickup

call and dials feature code.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

 CSTAServiceInitiatedEvent
 initiatedConnection = D3C2

 After feature access, the activating
connection clears.
CSTAConnectionClearedEvent
 droppedConnection = D3C2
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

The call pickup feature now connects the call to the party that is picking up.
CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_PICKUP
Private Data
 trunkUsed = <trunk>

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_PICKUP
Private Data
 trunkUsed = <trunk>

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 NOTE:
There CSTAConnectionClearedEvent will have a cause of EC_NONE
when the picked up call is alerting and EC_CALL_CANCELLED when the
call is parked or on hold.

Event Flows

12-200 Issue 2.2 Programmer’s Guide

Service Observing (MERLIN MAGIX Release 2.0
and Later)

A user may observe an active call.

Extension 12 has an active call. Station 11 observes the call.

Before After

 c D1
x11

D2
x12

C1

D3
x21

 c

 cD1
x11

D2
x12

C1
c

D3
x21

c

Observer Starts Observing Before Call

MERLIN MAGIX Release 2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Station 11 observes the call
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 11
 cause = EC_SILENT_MONITOR

Station 11 stops observing the call
CSTAReadyEvent
 agentDevice = 11
 agentID = 11

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_SILENT_MONITOR

Feature Invocation Event Flows

Programmer’s Guide Issue 2.2 12-201

MERLIN MAGIX Release 2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Station 11 observes the call
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = 21
 calledDevice = 12
 cause = EC_SILENT_MONITOR

Station 11 stops observing the call
CSTAReadyEvent
 agentDevice = 11
 agentID = 11

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_SILENT_MONITOR

Event Flows

12-202 Issue 2.2 Programmer’s Guide

Observer Starts Observing After Call Exists

MERLIN MAGIX Release 2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

Station 11 observes the call
CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

CSTAServiceInitiatedEvent
 initiatedConnection = D1C2

CSTAConnectionClearedEvent
 droppedConnection = D1C2
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

A CSTAEstablishedEvent is not provided when the Service Observer is added to the observed call if that call existed
prior to Service Observing feature activation..

Shared System Access Event Flows

Programmer’s Guide Issue 2.2 12-203

Shared System Access Event Flows

An understanding of Shared System Access (SSA) terminology and its
relationship to the TSAPI model will help in understanding the TSAPI event flows
that occur when connections interact with Shared System Access buttons.

An SSA button on an extension provides an appearance of an SA button at
another extension. Using SSA buttons may cause connections at the SA button to
transition into associative states that the MERLIN LEGEND and MERLIN
MAGIX switches term associative active and associative held. The MERLIN
LEGEND and MERLIN MAGIX switches make a distinction between the TSAPI
connected and held states and the associative states (which TSAPI does not
model).

In MERLIN LEGEND and MERLIN MAGIX terminology, when a call is alerting at
an SA button and a user at another station presses an SSA button and connects
to that call, that user has answered the call. The state of the call at the SA button
changes to associative active. The state of the call at the SSA is connected (a
TSAPI state). Thus, an application monitoring an extension where an SSA
answers a call will receive further events about the call.

When a call is active at an SA button and a user at another station presses an
SSA button and connects to that call, the user bridged onto the call. The state of
the call at the SA button remains active. The state of the call at the SSA is
bridged (not a TSAPI state). Thus, an application monitoring an extension where
an SSA bridges onto a call will not receive further events about the call.

Depending on whether an SSA user answers a call or bridges onto a call, event
flows will differ for an application monitoring the extension with the SSA button.

The following rules govern event flows when SSA buttons interact with calls:

n The MERLIN LEGEND and MERLIN MAGIX switches consider connections
that transition into the associative or bridged states as having left the defined
TSAPI model. As a result, they are considered to have been cleared from the
device where this transition occurred, and any applications monitoring the
device with the SA button where this occurs will receive a
CSTAConnectionClearedEvent event the first time a connection transitions
into an associative state.

n Once the MERLIN LEGEND or MERLIN MAGIX system supplies a CSTA-

ConnectionClearedEvent when a connection transitions into an
associative state at a device, the system will not supply any further events
for that connection at that device. The device may reconnect to the call
and the system will not supply any further events. (Note that the call is still
in an associative state.)

n An application monitoring an extension where an SSA answers a call will
receive events for that call (so long as the call does not enter an
associative state due to some later feature interaction).

Event Flows

12-204 Issue 2.2 Programmer’s Guide

n An application monitoring an extension where an SSA bridges onto a call
will not receive events for that call.

n Applications monitoring an extension having an SSA button do not receive
any events about an incoming call on the corresponding SA button unless
a user at the extension with the SSA button uses the SSA button to
answer the call. Of special interest is the fact that such an application will
not receive a CSTADeliveredEvent. Thus, the application cannot be
aware of the call on the corresponding SA button and the user must
manually answer the call on the SSA button.

SSA Button Answers Alerting Call; Call Activity
Follows on SA and SSA

A call placed from Extension 11 to Extension 12 is alerting at Extension 12. A
user at Extension 21 uses an SSA button (for Extension 12) to answer the call.

Before After

D1
x11

D2
x12

C1
c a

D3
x21

D1
x11

D2
x12

c

D3
x21

c

C1 assoc

Shared System Access Event Flows

Programmer’s Guide Issue 2.2 12-205

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
A call from Extension 11 is delivered
to Extension 12 (before diagram).
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

 User at Extension 21 uses SSA to
answer call.

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21

 At this point, connection D2C1 goes
to associative active state.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

 The connection still appears at
Extension 12 in the associative active
state.

Call activity at Extension 11 or 21 will
cause events to flow here.

Call activity at Extension 11 or 21 will
not cause events to flow here.

Call activity at Extension 11 or 21 will
cause events to flow here.

No event flows here. Extension 12 manually bridges back
onto call.

No event flows here.

No event flows here. Extension 12 hangs up. The
connection still appears at Extension
12 in the associative active state.

No event flows here.

Extension 11 puts the call on hold.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

Extension 11 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Event Flows

12-206 Issue 2.2 Programmer’s Guide

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

CSTAHeldEvent
 heldConnection = D3C1
 holdingDevice = 21

 Extension 21 puts the call on hold.
CSTAHeldEvent
 heldConnection = D3C1
 holdingDevice = 21

CSTARetrievedEvent
 retrievedConnection = D3C1
 retrievingDevice = 21

 Extension 21 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D3C1
 retrievingDevice = 21

Extension 11 hangs up the call.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Shared System Access Event Flows

Programmer’s Guide Issue 2.2 12-207

MERLIN MAGIX R2.0
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
A call from Extension 11 is delivered
to Extension 12 (before diagram).
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 User at Extension 21 uses SSA to
answer call.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 21
 cause = EC_NEW_CALL
Private Data
 originalCallInfo
 callingDevice = 11
 calledDevice = 12

 At this point, connection D2C1 goes
to associative active state.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

 The connection still appears at
Extension 12 in the associative active
state.

Call activity at Extension 11 or 21 will
cause events to flow here.

Call activity at Extension 11 or 21 will
not cause events to flow here.

Call activity at Extension 11 or 21 will
cause events to flow here.

Event Flows

12-208 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
No event flows here. Extension 12 manually bridges back

onto call.
CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

No event flows here.

No event flows here.
Extension 12 hangs up. The
connection still appears at Extension
12 in the associative active state.
CSTAReadyEvent
 agentDevice = 12
 agentID = 12

No event flows here.

Extension 11 puts the call on hold.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

Extension 11 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTAHeldEvent
 heldConnection = D3C1
 holdingDevice = 21

 Extension 21 puts the call on hold.
CSTAHeldEvent
 heldConnection = D3C1
 holdingDevice = 21

CSTARetrievedEvent
 retrievedConnection = D3C1
 retrievingDevice = 21

 Extension 21 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D3C1
 retrievingDevice = 21

Extension 11 hangs up the call
CSTAReadyEvent
 agentDevice = 11
 agentID = 11

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Shared System Access Event Flows

Programmer’s Guide Issue 2.2 12-209

MERLIN MAGIX R2.1 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
A call from Extension 11 is delivered
to Extension 12 (before diagram).
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 User at Extension 21 uses SSA to
answer call.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D3C1
 answeringDevice = 21
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 At this point, connection D2C1 goes
to associative active state.

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

 The connection still appears at
Extension 12 in the associative active
state.

Call activity at Extension 11 or 21 will
cause events to flow here.

Call activity at Extension 11 or 21 will
not cause events to flow here.

Call activity at Extension 11 or 21 will
cause events to flow here.

Event Flows

12-210 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1, continued
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
No event flows here. Extension 12 manually bridges back

onto call.
CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

No event flows here.

No event flows here.
Extension 12 hangs up. The
connection still appears at Extension
12 in the associative active state.
CSTAReadyEvent
 agentDevice = 12
 agentID = 12

No event flows here.

Extension 11 puts the call on hold.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

Extension 11 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTAHeldEvent
 heldConnection = D3C1
 holdingDevice = 21

 Extension 21 puts the call on hold.
CSTAHeldEvent
 heldConnection = D3C1
 holdingDevice = 21

CSTARetrievedEvent
 retrievedConnection = D3C1
 retrievingDevice = 21

 Extension 21 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D3C1
 retrievingDevice = 21

Extension 11 hangs up the call
CSTAReadyEvent
 agentDevice = 11
 agentID = 11

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D3C1
 releasingDevice = 21
 cause = EC_CALL_CANCELLED

Shared System Access Event Flows

Programmer’s Guide Issue 2.2 12-211

SSA Button Bridges onto Call at SA Button; Call
Activity Follows on SA and SSA

Extensions 11 and 12 are connected on a call. A user at Extension 21 uses an
SSA button (for Extension 12) to bridge onto the call.

Before During

D1
x11

D2
x12

C1
c c

D3
x21

bridged

D1
x11

D2
x12

c

D3
x21

C1 c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21

CSTAEstablishedEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

A call from Extension 11 is answered
at Extension 12 (before diagram).
CSTAEstablishedEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

 User at Extension 21 uses SSA to
bridge onto call. Connection at
Extension 21 is in bridged state.

The “During” illustration in the figure above applies at this point.
 The connection appears in the

bridged state on the SSA.
Call activity at Extension 11 will cause
events to flow here.

Call activity at Extension 11 will cause
events to flow here. Call activity at
Extension 21 will not cause events to
flow here.

Call activity at Extension 11 or 21 will
not cause events to flow here.

Extension 11 puts the call on hold.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

Extension 11 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

 Extension 21 puts the call on hold.
 Extension 21 retrieves the call.
Extension 11 hangs up the call.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

 CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

Event Flows

12-212 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
 A call from Extension 11 is answered

at Extension 12 (before diagram).
CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

CSTAEstablishedEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

 User at Extension 21 uses SSA to
bridge onto call. Connection at
Extension 21 is in bridged state.
CSTANotReadyEvent
 agentDevice = 21
 agentID = 21

The “During” illustration in the figure above applies at this point.
 The connection appears in the

bridged state on the SSA.
Call activity at Extension 11 will cause
events to flow here.

Call activity at Extension 11 will cause
events to flow here. Call activity at
Extension 21 will not cause events to
flow here.

Call activity at Extension 11 or 21 will
not cause events to flow here.

Extension 11 puts the call on hold.
CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

Extension 11 retrieves the call.
CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

 Extension 21 puts the call on hold.
 Extension 21 retrieves the call.
Extension 11 hangs up the call.
CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_NONE

CSTAReadyEvent
 agentDevice = 11
 agentID = 11

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

! CAUTION:
Because there are no events that reflect connections being in non-TSAPI
states, an application here does not receive events about the bridged
connection. Notice that the application cannot assume that if, according to
the events, only one connection remains, that the call will be torn down.
There may be another connection in a non-TSAPI state.

Shared System Access Event Flows

Programmer’s Guide Issue 2.2 12-213

Call Activity on an SA button Where There is an
Associated SSA Button at Another Extension
(that has Not Answered or Bridged)

A user at Extension 12 answers a call from Extension 11. Extension 21 has an
SSA button (for Extension 12).

Before After

D1
x11

D2
x12

C1
i

D3
x21

D1
x11

D2
x12

D3
x21

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12

No event on this monitor.

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12

User at Extension 12 answers call.
CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12

No event on this monitor.

 cstaClearConnection()
 call = D2C1

 CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

No event on this monitor.

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Event Flows

12-214 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0 and later
Stream Monitoring Extension 11 Stream Monitoring Extension 12 Stream Monitoring Extension 21
Call delivered to Extension 12.
CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

No event on this monitor.

 User at Extension 12 answers call.
CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

CSTAEstablishedEvent
 establishedConnection = D2C1
 answeringDevice = 12
 callingDevice = 11
 calledDevice = 12
 cause = EC_NEW_CALL

No event on this monitor.

 cstaClearConnection()
 call = D2C1

 CSTAClearConnectionConfEvent
CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_CALL_CANCELLED

No event on this monitor.

 CSTAReadyEvent
 agentDevice = 12
 agentID = 12

CSTAConnectionClearedEvent
 droppedConnection = D1C1
 releasingDevice = 11
 cause = EC_CALL_CANCELLED

Direct Facility Termination Event Flows

Programmer’s Guide Issue 2.2 12-215

Direct Facility Termination Event
Flows

Direct Facility Termination (DFT) or Personal Line buttons are treated in the same
way as SSA buttons. The various terms (answer, bridge) and associative states
also apply to the interaction between DFT and SA buttons. The rules governing
the events that flow when interactions occur (seen in the SSA section) also apply
to DFTs.

One difference between DFT and SSA buttons is that a DFT button may appear
at the same extension as the SA button that it is interacting with.

Incoming Call on DFT; Call Activity Follows

Extension 11 receives an incoming trunk call on a DFT. Extension 11 answers
the call on the DFT. Because the DFT answers the call, an application monitoring
Extension 11 will see call events as call activity occurs on that DFT. The
application cannot control the call on the DFT in releases prior to MERLIN MAGIX
2.0. Beginning in MERLIN MAGIX 2.0, the call can be controlled via an
application.

Before After

D1
x11

D2
external

D1
x11

D2
external

c C1 c

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
Activity Stream Monitoring Extension 11
Extension 11 receives an incoming
trunk call on a DFT.

User at Extension 11 answers call. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>

User at Extension 11 presses HOLD. CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

User at Extension 11 reconnects to
the call.

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Event Flows

12-216 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.0
Activity Stream Monitoring Extension 11
Extension 11 receives an incoming
trunk call on a DFT.

CSTADeliveredEvent
 alertingConnection = D1C1
 alertinggDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

User at Extension 11 answers call. CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

User at Extension 11 presses HOLD. CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

User at Extension 11 reconnects to
the call.

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

MERLIN MAGIX R2.1 and later
Activity Stream Monitoring Extension 11
Extension 11 receives an incoming
trunk call on a DFT.

CSTADeliveredEvent
 alertingConnection = D1C1
 alertinggDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

User at Extension 11 answers call. CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

 CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/EXT>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

User at Extension 11 presses HOLD. CSTAHeldEvent
 heldConnection = D1C1
 holdingDevice = 11

User at Extension 11 reconnects to
the call.

CSTARetrievedEvent
 retrievedConnection = D1C1
 retrievingDevice = 11

Direct Facility Termination Event Flows

Programmer’s Guide Issue 2.2 12-217

DFT Bridges onto Call at SA; Call Activity
Follows

A user at Extension 11 answers a call on an SA (In MERLIN MAGIX 2.0, this will
hold true for a DFT). Once the call is answered, a DFT at Extension 12 bridges
onto the call.

MERLIN LEGEND R5.0, 6.0, 6.1, 7.0 & MERLIN MAGIX R1.0 and 1.5
 Stream Monitoring Extension 11 Stream Monitoring Extension 12
Call delivered to Extension 11. CSTADeliveredEvent

 connection = D2C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/TRUNK>

User at Extension 11 answers call. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/TRUNK>

DFT button bridges onto call. The call
is active at Extension 11 and bridged
at Extension 12.

 Call activity at Extension 11 will cause
events to flow on this stream.

Call activity at Extension 11 will not
cause any events to flow on this
stream.

MERLIN MAGIX R2.0
 Stream Monitoring Extension 11 Stream Monitoring Extension 12
Call delivered to Extension 11. CSTADeliveredEvent

 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/TRUNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/TRUNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

User at Extension 11 answers call CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/TRUNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

DFT button bridges onto call. The call
is active at Extension 11 and bridged
at Extension 12.

 CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

 Call activity at Extension 11 will cause
events to flow on this stream.

Call activity at Extension 11 will not
cause any events to flow on this
stream.

Event Flows

12-218 Issue 2.2 Programmer’s Guide

MERLIN MAGIX R2.1 and later
 Stream Monitoring Extension 11 Stream Monitoring Extension 12
Call delivered to Extension 11. CSTADeliveredEvent

 connection = D1C1
 alertingDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

CSTADeliveredEvent
 connection = D2C1
 alertingDevice = 12
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <UNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

User at Extension 11 answers call CSTANotReadyEvent
 agentDevice = 11
 agentID = 11

. CSTAEstablishedEvent
 establishedConnection = D1C1
 answeringDevice = 11
 callingDevice = <ANI/ICLID/UNK>
 calledDevice = <DNIS/TRUNK>
 cause = EC_NEW_CALL
Private Data
 trunkUsed = <trunk>

CSTAConnectionClearedEvent
 droppedConnection = D2C1
 releasingDevice = 12
 cause = EC_NONE

DFT button bridges onto call. The call
is active at Extension 11 and bridged
at Extension 12.

 CSTANotReadyEvent
 agentDevice = 12
 agentID = 12

 Call activity at Extension 11 will cause
events to flow on this stream.

Call activity at Extension 11 will not
cause any events to flow on this
stream.

Appendix A

Contents

Programmer’s Guide Issue 2.2 A-i

Supported MERLIN LEGEND Station Types A-1
Supported MERLIN MAGIX Station Types A-3

Contents

A-ii Programmer’s Guide Issue 2.2

Appendix A

Programmer’s Guide Issue 2.2 A-1

Supported MERLIN
LEGEND Station Types

MLX Terminals
MLX-5 Supported
MLX-5 w/ Display Supported
MLX-10 Supported
MLX-10 w/ Display Supported
MLX-16 w/ Display Supported
MLX-28 w/ Display Supported
MLX-20L Supported
Multi-Function Module Not Supported

MLX Adjuncts
PassageWay Direct Connection Not Supported
IROB (505A) Not Supported
DSS Not Supported
Headsets (Supra) Not Supported

ATL Terminals
5 Button Membrane Not Supported
10 Button Membrane Not Supported
34 Button Membrane Not Supported
34 Button Deluxe Not Supported
34 Button SR w/ Display Not Supported
BIS-10 Supported
BIS-22 Supported
BIS-22D Supported
BIS-34 Supported
BIS-34 w/ Display Supported
Attendant Console Not Supported
MERLIN PFC Telephone Not Supported

Tip/Ring Terminals
Door Phone Controller Not Supported
Hands Free Unit (S203A) Not Supported
Answering Machine Not Supported
Transaction Phone Not Supported
Facsimile Not Supported
AA/VMS Not Supported
External Alert Not Supported
Announcement Unit Not Supported
Dial Dictation Not Supported
Modem Not Supported
IROB Not Supported
OPRE Not Supported
CVIS INTRO Not Supported

LS/GS CO Line
Magic On Hold w/ Music Coupler Not Supported
Door Phone Controller Not Supported
Loudspeaker Paging System Not Supported
Music on Hold Not Supported

ATL Adjuncts
Hands Free Unit (S102A &
S202A)

Not Supported

Headset Adapter Not Supported
General Purpose Adapter Not Supported
Starset II & Supra Headsets Not Supported
Starmate Headset Not Supported
IROB (341) Not Supported

Tip/Ring Sets
500 Sets Not Supported
2500 Sets Not Supported
2500 MMGL sets w/ Display Not Supported
8110 & 8102 Sets Not Supported
Videophone 2500 Not Supported
Picasso Still Image Phone Not Supported

Appendix A

A-2 Issue 2.2 Programmer’s Guide

ETR Terminals
MLS-6 Supported
MLS-12 Supported
MLS-12D Supported
MLS-18D Supported
MLS-34D Supported
ETR-6 Supported
ETR-18 Supported
ETR-18D Supported
ETR-34D Supported

STU Sets
ATL III Not Supported
T/R III Not Supported
MLX 5 Not Supported
MLX 10 Not Supported
MLX 20L Not Supported
MLX 28 Not Supported

ATL Cordless Sets
Transtalk Not Supported

BRI Sets
7500 Data Not Supported

Telephone Set
Model

TSAPI
application
can monitor

set?

Generates
TSAPI events

when party to a
call?

TSAPI
application
can control

call?
MLX-5 yes yes yes
MLX-5D yes yes yes
MLX-10 yes yes yes
MLX-10D yes yes yes
MLX10-DP yes yes yes
MLX-16DP yes yes yes
MLX-20L yes yes yes
MLX-20L as QCC no no no
MLX-28D yes yes yes
ATL 5-line membrane* yes yes no
ATL 10-line membrane* yes yes no
ATL 34-line membrane* yes yes no
ATL 34-line Deluxe membrane* yes yes no
ATL 10-line button HFAI* yes yes no
ATL 34-line button BIS* yes yes yes
ATL 34-line button BIS/DIS* yes yes yes
ATL BIS-10 yes yes yes
ATL BIS-22 yes yes yes
ATL BIS-22D yes yes yes
ATL BIS-34* yes yes yes
ATL BIS-34D yes yes yes
ATL MLC-5 Cordless yes yes no
MDC 9000 Cordless yes yes no
MDW 9000 Cordless/Wireless yes yes no
MERLIN PFC Telephone no yes no
Single line set - rotary no yes no
Single line set - DTMF no yes no
BRI 7500 data set no no no

* These are vintage telephone models; no longer available for sale or lease.

Appendix A

Programmer’s Guide Issue 2.2 A-3

Supported MERLIN MAGIX
Station Types

MLX Terminals
MLX-5 Supported
MLX-5 w/ Display Supported
MLX-10 Supported
MLX-10 w/ Display Supported
MLX-16 w/ Display Supported
MLX-28 w/ Display Supported
MLX-20L Supported
Multi-Function Module Not Supported

MLX Adjuncts
PassageWay Direct Connection Not Supported
IROB (505A) Not Supported
DSS Not Supported
Headsets (Supra) Not Supported

Tip/Ring Terminals
Door Phone Controller Supported
Hands Free Unit (S203A) Supported
Answering Machine Supported
Transaction Phone Supported
Facsimile Supported
AA/VMS Supported
External Alert Supported
Announcement Unit Supported
Dial Dictation Supported
Modem Supported
IROB Supported
OPRE Not Supported
CVIS INTRO Not Supported

LS/GS CO Line
Magic On Hold w/ Music Coupler Not Supported
Door Phone Controller Not Supported
Loudspeaker Paging System Not Supported
Music on Hold Not Supported

Tip/Ring Sets
500 Sets Supported
2500 Sets Supported
2500 MMGL sets w/ Display Supported
8110 & 8102 Sets Supported

STU Sets
T/R III Not Supported
MLX 5 Not Supported
MLX 10 Not Supported
MLX 20L Not Supported
MLX 28 Not Supported

BRI Sets
7500 Data Not Supported

4400-series Terminals
4400 Supported
4400D Supported
4406D+ Supported
4412D+ Supported
4424D+ Supported
4424LD+ Supported

4400-series Adjuncts
IROB (505A) Not Supported
DSS Not Supported
Headsets (Supra) Not Supported

ETR Terminals
MLS-6 Supported
MLS-12 Supported
MLS-12D Supported
MLS-18D Supported
MLS-34D Supported
ETR-6 Supported
ETR-18 Supported
ETR-18D Supported
ETR-34D Supported

Appendix A

A-4 Issue 2.2 Programmer’s Guide

Telephone Set
Model

TSAPI
application
can monitor

set?

Generates
TSAPI events

when party to a
call?

TSAPI
application
can control

call?
MLX-5 yes yes yes
MLX-5D yes yes yes
MLX-10 yes yes yes
MLX-10D yes yes yes
MLX10-DP yes yes yes
MLX-16DP yes yes yes
MLX-20L yes yes yes
MLX-20L as QCC no no no
MLX-28D yes yes yes
4400 yes yes no
4400D yes yes no
4406D+ yes yes no
4412D+ yes yes no
4424D+ yes yes no
4424LD* yes yes yes
4424LD+ as QCC no no no
Single line set - rotary yes yes yes
Single line set - DTMF yes yes yes
BRI 7500 data set no no no

Abbreviations

Programmer’s Guide Issue 2.2 ABB-1

A
ACD

Automatic Call Distribution
ALS

Automatic Line Selection
ANI

Automatic Number Identification
ARS

Automatic Route Selection

B
BRI

Basic Rate Interface

C
CBQ

Call Back Queueing
CSTA

Computer Supported Telephony
Applications

CTI
Computer Telephony Integration

D
DFT

Direct Facility Termination
DGC

Directed Group Calling

DID
Direct Inward Dial

DLC
Direct Line Console

DLL
Dynamic Link Library

DND
Do Not Disturb

DNIS
Dialed Number Identification Service

DTAC
Direct Termination Attendant Console

E
ECMA

European Computer Manufacturers’
Association

ESR
Event Service Routine

G
GPA

General Purpose Adapter

H
HFAI

Hands Free Answer on Intercom
HFU

Hands Free Unit

I
ICLID

Individual Call Line Identification

L
LND

Last Number Dialed – Renamed to Redial
in MERLIN MAGIX 1.0

M
MLX

Multiline Telephone

Abbreviations

ABB-2 Issue 2.2 Programmer’s Guide

N
NT2

Network Termination 2

O
OA&M

Operations, Administration and
Maintenance

P
PRI

Primary Rate Interface

Q
QCC

Queued Call Console

R
RLP

Ringing Line Preference

S
SA

System Access

T
TCP/IP

Transmission Control Protocol/Internet
Protocol

TSAPI
Telephony Services Application
Programming Interface

U
UDP

Uniform Dial Plan

V
VMI

Voice Messaging Interface
VMS/AA

Voice Mail System/Auto-Attendant

Glossary

Programmer’s Guide Issue 2.2 GL-1

4424LD+ Telephone

A 24-line button digital telephone with a 7-line by 24-character display. See also Queued Call
Console (QCC).

4400-series Telephone
A digital telephone that provides multiple line buttons for making or receiving calls or
programming features.

A
API Control Services (ACS)

An application uses ACS (a subset of TSAPI) to open, close, and control a communication chan-
nel (known as a stream) to a Telephony Server. Once an application opens a stream, the appli-
cation uses other TSAPI function calls on the stream to request CSTA services from the Teleph-
ony Server.

Associative Active
State of a MERLIN LEGEND SA button. An SA button is in an Associative Active state if a shared
SA button for this SA is participating in a call.

Associative Hold
State of a MERLIN LEGEND SA button. An SA button is in an Associative Hold state if a shared
SA button for this SA has a call on hold.

Automatic Line Selection
Programmed order in which the switch makes outside lines available to the user.

Automatic Number Identification (ANI)
Network service that automatically identifies a caller’s billing number and transmits that number
from the caller’s local central office to another point on or off the public network.

Automatic Route Selection
Switch feature that automatically routes calls on outside trunks according to the number dialed
and trunk availability.

B
Basic Rate Interface (BRI)

Standard digital frame format that specifies the protocol between the communications system and
a terminal. BRI runs at 192 kbps and provides two 64-kbps voice (or B-channels) and one 16 kbps
signaling (or D-channel) per port. The remaining 48 kbps are used for framing and D-channel
contention.

“Behind the switch mode”
A MERLIN LEGEND switch-administered mode where trunk lines from the MERLIN LEGEND
switch connect to station ports on another switch. The MERLIN LEGEND switch user accesses
features on the other switch (switchhook flashes, for example, pass through the MERLIN
LEGEND switch to the other switch).

Glossary

GL-2 Issue 2.2 Programmer’s Guide

C
Callback Screening

Feature that allows a user to listen in while a caller is leaving a Voice Mail message. If desired,
the user may interrupt Voice Mail treatment and join the call as a regular call participant.

Callback Queuing (CBQ)
Feature that completes calls to busy extensions or pools.

Collected Digits
User-entered digits that have been collected by a voice prompter unit. See also Prompted Digits.

Computer-Supported Telephony Applications (CSTA)
CSTA is a European Computer Manufacturers’ Association (ECMA) standard that defines a stan-
dard set of Telephony Services, responses, and events. The CSTA definitions form the foundation
for PassageWay Telephony Services. Although CSTA provides standard service and event
definitions, it does not provide an Application Programming Interface (API) definition. TSAPI
provides the API for PassageWay Telephony Services.

Cold Start
Type of MERLIN LEGEND switch restart. A cold start tears down all calls but retains administered
translations.

Computer Telephony Integration (CTI)
The integration of services provided by a telephone and a computer.

CSTA Standard 217
CSTA Services standard of December 1994 (as opposed to the earlier June 1992 Services stan-
dard)

CTI link
A link between a Telephony Server and a switch. In this product, this is an NT2 connection be-
tween the Telephony Server and MERLIN LEGEND switch. See also NT2.

D
Destination Digits

String of digits that is used to dial a call. These digits may include routing or facilities access
digits.

Dialed Number Identification Service (DNIS)
Service provided by the network. Identifies which group was called based on the 800 or 900
service number dialed and makes the number dialed available to the switch.

Direct Facility Termination (DFT)
A programmable button on a MERLIN LEGEND phone that is programmed to be a central office
line. Also known as a “Personal Line” button. The button connects to a Central Office trunk. The
user may use the button to place outgoing calls or answer incoming calls on that trunk.

Direct Inward Dial (DID)
Service that transmits from the telephone company central office and routes incoming calls
directly to the called extension, calling group, or outgoing trunk pool, bypassing the system
operator.

Direct Line Console (DLC)
Telephone used by a system operator to answer outside calls (not directed to an individual or a
group) and inside calls, transfer calls, make outside calls for users with outward calling
restrictions, set up conference calls, and monitor system operation.

Direct Termination Attendant Console (DTAC)
See Direct Line Console (DLC).

Directed Group Calling (DGC)
See Group Calling.

Glossary

Programmer’s Guide Issue 2.2 GL-3

Dynamic Link Library
A library of compiled subroutines that are linked dynamically to a Windows executable program at
the time it is run.

Do Not Disturb (DND)
A MERLIN LEGEND OR MERLIN MAGIX switch feature that prevents calls arriving at a user’s
phone from ringing at that phone.

E
End of Dialing

This term is used primarily with external trunk calls to indicate that the user has completed dialing
a call. For analog trunks (non-PRI trunks), the switch determines “end-of-dialing” when a timer
expires after the last digit has been dialed. For PRI trunks, “end-of-dialing” is signaled on the CO
trunk by the central office. When this occurs, it indicates that the user has dialed a valid telephone
address.

Enhanced Tip/Ring (MLX)
An analog or digital telephone that provides multiple line buttons for making or receiving calls or
programming features.

Event Service Routine (ESR)
In some operating system environments (Windows and Windows NT), an application can use an
ESR to receive asynchronous notification of arriving events. The ESR mechanism notifies the
application of arriving events, but does not remove the events from the event queue. The
application must use acsGetEventBlock(), acsGetEventPoll(), or eventNotify() to receive the
message. The application can use an ESR to trigger a specific action when an event arrives in the
event queue. For more information, see Telephony Services Application Programming Interface
(TSAPI), Version 2.

G
General Purpose Adapter (GPA)

An adjunct used with ATL telephones to add a tip/ring device such as a fax or modem or answer-
ing machine. ATL sets are not supported beginning in MERLIN MAGIX 1.5.

Group Calling
A MERLIN LEGEND OR MERLIN MAGIX switch feature that directs incoming calls to a specific
group of telephones (a calling group). A calling group is a team of individuals who answer and
handle the same type of calls, for example, high-volume work groups such as sales, service,
marketing, repair, and technical support. Also fax machines that receive a large number of fax
messages can be placed in a calling group to allow multiple calls to be sent. (Up to thirty-two
calling groups, with up to twenty members in each group, are supported.)
Through Group Calling, all members in the calling group are assigned to a single extension
number. Specific trunks can be assigned to ring directly into the calling group so that outside
callers can dial a published telephone number to reach the group, bypassing the operator.

Glossary

GL-4 Issue 2.2 Programmer’s Guide

H
Hands Free Answer on Intercom (HFAI)

A feature that allows a user to answer a voice-announced call.
Hands Free Unit

A speakerphone used with ATL telephones. See also “Headset Adapter 502C.” ATL sets are not
supported beginning in MERLIN MAGIX 1.5.

Headset Adapter 502C
An adjunct used with ATL telephones to add a headset. ATL sets are not supported beginning in
MERLIN MAGIX 1.5.

I
Individual Call Line Identification (ICLID)

Commonly known as Caller ID. A service provided by some local telephone companies (if local
regulations allow) that supplies the calling party telephone number. In Release 3.0 and later, an
800 GS/LS-ID module on the system can capture this information and display it on the screens of
MLX telephones. Beginning in MAGIX Release 1.0, the 800 GS/LS-ID module, the 412 LS-ETR
and 412 LS-TDL module can can capture this information and display it on the screens of MLX,
ETR and 4400-series telephones.

Invoke ID
An identifier within TSAPI (and CSTA) that allows an application to correlate the service confir-
mation events with requests in the context of a TSAPI stream.

IPX/SPX
LAN communication protocol used between a client PC and a NetWare server.

I-use call
The current active call at a telephone. The red LED is lit at the button for this call. The user is off-
hook on this call.

L
Last Number Dialed (LND)

A feature that re-dials the last number a user has called without the need for the user to re-enter
the dialed digits. See also “Redial”.

Glossary

Programmer’s Guide Issue 2.2 GL-5

M
MERLIN LEGEND PBX Driver

The MERLIN LEGEND PBX Driver is a software module on a Telephony Server that interfaces
switch-independent Telephony Server software to the MERLIN LEGEND Communications
System. This software terminates and manages the MERLIN LEGEND CTI link.

MLX-20L Telephone
A 20-line button digital telephone with a 7-line by 24-character display. See also Queued Call
Console (QCC).

Multiline Telephone (MLX)
An analog or digital telephone that provides multiple line buttons for making or receiving calls or
programming features.

Multiline Telephone (MLX) Adjunct
An MLX or 4400-series telephone adjunct used to add a tip/ring device (such as a fax, modem, or
answering machine) or an additional ringer.

Multi-function module
An MLX or 4400-series telephone adjunct used to add a tip/ring device (such as a fax, modem, or
answering machine) or an additional ringer.

N
Network Termination 2 (NT2)

ISDN protocol designed to support MERLIN LEGEND terminal endpoints at the NT2 reference
point defined by CCITT I.411. NT2 is a line protocol for the MLX terminal family that provides
standards-compliant channel access plus advanced local features.

Normal Mode
Condition of a MERLIN LEGEND telephone. The telephone is in one of the following states in
Normal Mode: forced idle; program mode; maintenance mode; administration mode; test mode;
private directory program; maintenance busy; inspect mode; entering pound code, star code, or
feature code; turning on/off night service with a password; entering an account code; entering an
authorization code; activating Direct Voice Mail; activating Drop; changing Extension Status when
in calling group or hotel/motel mode; activating/deactivating Forward; activating/deactivating
Follow Me; activating Send/Remove Message; activating Leave Message without Calling;
activating Cancel Message Sent; activating Posted Message; entering Night Service password; or
activating/deactivating Reminder Service.

Glossary

GL-6 Issue 2.2 Programmer’s Guide

P
Primary Rate Interface (PRI)

A standard Integrated Services Digital Network (ISDN) frame format that specifies the protocol
used between two or more communications systems. North American PRI runs at 1.544 Mbps
and provides 23 64-Kbps B-channels (voice or data) and one 64-Kbps D-channel (signaling). The
D-channel is the 24th channel of the interface and contains multiplexed signaling information for
the other 23 channels.

Private Data
Private Data is a TSAPI mechanism that allows a vendor to enhance TSAPI services and events
and even provide new services within the TSAPI framework. The MERLIN LEGEND PBX Driver
uses private data to provide any call prompting digits that have been collected for a call. The
programming interface to MERLIN LEGEND private data features may only be used with a
MERLIN LEGEND switch.

More specifically, the privateData parameter carries MERLIN LEGEND private data in those
events where MERLIN LEGEND CTI supplies Private Data. This document defines a C structure
that overlays the privateData parameter and gives programmers access to MERLIN LEGEND
Private Data.

Prompted
During a Make Call request, the originator’s telephone has been “prompted” when the MERLIN
LEGEND OR MERLIN MAGIX switch has cued the user to go off-hook on the speakerphone.

Prompted Digits
An industry term having the same meaning as “collected digits.” See also Collected Digits.

Q
Queued Call Console (QCC)

An MLX-20Lor 4424LD+ telephone used by a system operator in Hybrid/PBX mode only. Used to
answer outside calls (directed to a system operator position) and inside calls, direct inside and
outside calls to an extension or an outside telephone number, serve as a message center, make
outside calls for users with outward calling restrictions, set up conference calls, and monitor
system operation. See also MLX-20L or 4424LD+ Telephone.

R
Redial

Beginning in MERLIN MAGIX Release 1.0, the “Last Number Dialed” feature was renamed to
“Redial. A feature that re-dials the last number a user has called without the need for the user to
re-enter the dialed digits. See also “Last Number Dialed”.

Responding Mode

Describes the condition of a telephone. The telephone is in Responding Mode when it is plugged
in and has a MERLIN LEGEND OR MERLIN MAGIX switch recognized class mark.

Ringing Line Preference (RLP)
Feature which selects a preferred line appearance when a call arrives.

Routing Digits
Digits in the Destination Digits that either select an outgoing trunk facility or direct the Automatic
Route Selection feature to choose the trunk route for an outgoing call.

Glossary

Programmer’s Guide Issue 2.2 GL-7

S
SA Button

See System Access Button.
Senderization

Point in the placement of an outgoing call where the originating extension is dialing and the
MERLIN LEGEND switch has selected the outgoing trunk but the MERLIN LEGEND OR MERLIN
MAGIX switch has not connected the originating extension to the trunk. The MERLIN LEGEND
OR MERLIN MAGIX switch is providing dialing feedback to the originating station and passing the
extension’s dialed digits out over the trunk.

Service Observing
Feature that adds an extension (the Service Observer) to a call with a listen-only connection
whenever the observed extension is active on a call.

Supervised Transfer
A transfer where the consulting party waits for the consultated party to answer before completing
the transfer.

System Access (SA) Button
A type of line button on a MERLIN LEGEND switch station set (used in Hybrid/PBX mode) to
make or receive inside or outside calls. A user typically has several of these buttons on a
telephone set. Calls appear on SA buttons (as well as other types of buttons.) There are various
types of SA buttons: SA-Ring, SA-Voice, SA-Originate-Only-Ring, SA-Originate-Only-Voice, SSA-
Shared SA.

T
TCP/IP

Communications protocol used between a client PC and a server.
Telephony Server

A Telephony Server is a server on a local area network that provides Telephony Services to client
applications. The Telephony Server has a Computer Telephony Integration (CTI) link to a MERLIN
LEGEND Communications System. A client application makes TSAPI requests of the Telephony
Server. The Telephony Server passes these requests to the MERLIN LEGEND PBX Driver, which,
in turn, passes them over the CTI link to the MERLIN LEGEND switch. The MERLIN LEGEND
switch processes the request and returns responses and call events through the Telephony
Server to the requesting application.

Telephony Services Application Programming Interface (TSAPI)
TSAPI is the C programming language interface to CentreVu Telephony Services. Application
programmers use TSAPI to access CSTA services, responses, and events. TSAPI is switch-
independent and supports many Telephony Services-compliant drivers, including the MERLIN
LEGEND PBX Driver.

TSAPI Cross Reference ID
An identifier within TSAPI (and CSTA) that allows an application to correlate events with the
monitor request in the context of a TSAPI stream.

TSAPI stream
A connection between a PassageWay Telephony Services application and a MERLIN LEGEND
PBX Driver over which TSAPI requests, acknowledgments, events, etc. flow.

Glossary

GL-8 Issue 2.2 Programmer’s Guide

U
Uniform Dial Plan (UDP)

A MERLIN LEGEND OR MERLIN MAGIX switch feature (Release 6.0 and later) that allows a
caller at any station in a private network to dial the same number of digits (i.e., without the need to
dial an access code) to reach any other station in the same private network, even if the originating
station set is physically connected to one MERLIN LEGEND OR MERLIN MAGIX switch and the
terminating station set is physically connected to a different MERLIN LEGEND OR MERLIN
MAGIX switch (e.g., one MERLIN LEGEND OR MERLIN MAGIX switch of the private network is in
California and the other is in New Jersey). If the originating station set and the terminating station
set are connected to the same MERLIN LEGEND OR MERLIN MAGIX switch, the UDP is called a
local UDP. If the originating station set and the terminating station set are connected to different
MERLIN LEGEND OR MERLIN MAGIX switches, the UDP is called a non-local UDP.

Unsupervised Transfer
A transfer where the consulting party completes the transfer without waiting for the consulting
party to answer.

V
Voice Mail System/Auto-Attendant (VMS/AA)

Application that allows users to send messages, forward messages with comments, and reply to
messages to other extensions in the VMS.

Bibliography

Programmer’s Guide Issue 2.2 BIB-1

Telephony Services Application Programming Interface (TSAPI), Version 2

Standard ECMA-217 Services for Computer-Supported Telecommunications Applications
(CSTA), European Computer Manufacturers’ Association, December 1994

MERLIN LEGEND Communications System Release 7.0 Feature Reference, 555-670-110

MERLIN MAGIX Integrated System Feature Reference – Release 2.2 and Earlier,
555-722-110

Network Manager’s Guide for MERLIN LEGEND Advanced Communications System
Windows NT Driver

Network Manager’s Guide for MERLIN MAGIX Integrated System PBX Driver

CentreVu Computer-Telephony − Telephony Services and CallVisor PC Installation

CentreVu Computer-Telephony − Telephony Services Administration and Maintenance

Bibliography

BIB-2 Issue 2.2 Programmer’s Guide

